Sharp minima for multiobjective optimization in Banach spaces

被引:17
作者
Zheng, X. Y.
Yang, X. M.
Teo, K. L.
机构
[1] Yunnan Univ, Dept Math, Kunming 650091, Peoples R China
[2] Chongqing Normal Univ, Dept Math, Chongqing, Peoples R China
[3] Curtin Univ Technol, Dept Math & Stat, Perth, WA 6845, Australia
来源
SET-VALUED ANALYSIS | 2006年 / 14卷 / 04期
关键词
coderivative; multiobjective optimization; normal cone; sharp minimum; subdifferential;
D O I
10.1007/s11228-006-0023-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study sharp minima for multiobjective optimization problems. In terms of the Mordukhovich coderivative and the normal cone, we present sufficient and or necessary conditions for existence of such sharp minima, some of which are new even in the single objective setting.
引用
收藏
页码:327 / 345
页数:19
相关论文
共 50 条
  • [31] EVOLUTION EQUATIONS AND SUBDIFFERENTIALS IN BANACH SPACES
    Akagi, Goro
    Otani, Mitsuharu
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2003, : 11 - 20
  • [32] Solving Multiobjective Optimization Problem by Constraint Optimization
    Jiang, He
    Zhang, Shuyan
    Ren, Zhilei
    [J]. PARALLEL PROBLEMS SOLVING FROM NATURE - PPSN XI, PT I, 2010, 6238 : 637 - +
  • [33] Multiobjective Extremal Optimization for Portfolio Optimization Problem
    Chen, Min-Rong
    Weng, Jian
    Li, Xia
    [J]. 2009 IEEE INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTING AND INTELLIGENT SYSTEMS, PROCEEDINGS, VOL 1, 2009, : 552 - +
  • [34] Multiobjective optimization of neural network
    王继成
    吕维雪
    [J]. Science in China(Series B) , 1995, (08) : 971 - 978
  • [35] Multiobjective Optimization by Decision Diagrams
    Bergman, David
    Cire, Andre A.
    [J]. PRINCIPLES AND PRACTICE OF CONSTRAINT PROGRAMMING, CP 2016, 2016, 9892 : 86 - 95
  • [36] On a gap between multiobjective optimization and scalar optimization
    Aghezzaf, B
    Hachimi, M
    [J]. JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2001, 109 (02) : 431 - 435
  • [37] On a Gap between Multiobjective Optimization and Scalar Optimization
    B. AGHEZZAF
    M. HACHIMI
    [J]. Journal of Optimization Theory and Applications, 2001, 109 : 431 - 435
  • [38] Lipschitz functions on Banach spaces which are actually on Asplund spaces
    CHENG Lixin Shi ShuzhongNankai Institute of Mathematics
    [J]. Chinese Science Bulletin, 1997, (24) : 2051 - 2054
  • [39] A subgradient method for multiobjective optimization
    Da Cruz Neto, J. X.
    Da Silva, G. J. P.
    Ferreira, O. P.
    Lopes, J. O.
    [J]. COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2013, 54 (03) : 461 - 472
  • [40] Decision uncertainty in multiobjective optimization
    Gabriele Eichfelder
    Corinna Krüger
    Anita Schöbel
    [J]. Journal of Global Optimization, 2017, 69 : 485 - 510