Capacity Fade Mechanism of Li4Ti5O12 Nanosheet Anode

被引:92
|
作者
Chiu, Hsien-Chieh [1 ]
Lu, Xia [1 ,2 ]
Zhou, Jigang [3 ]
Gu, Lin [4 ]
Reid, Joel [3 ]
Gauvin, Raynald [1 ]
Zaghib, Karim [5 ]
Demopoulos, George P. [1 ]
机构
[1] McGill Univ, Mat Engn, Montreal, PQ H3A 0C5, Canada
[2] Beijing Univ Chem Technol, Coll Energy, Beijing 100029, Peoples R China
[3] Canadian Light Source, 44 Innovat Blvd, Saskatoon, SK S7N 2V3, Canada
[4] Chinese Acad Sci, Inst Phys, POB 603, Beijing 100190, Peoples R China
[5] Inst Rech Hydroquebec IREQ, Varennes, PQ J3X 1S1, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
X LESS-THAN; NEGATIVE-ELECTRODE; DOPED LI4TI5O12; SOLID-SOLUTION; ION DIFFUSION; AB-INITIO; LI; SPINEL; ENERGY; PERFORMANCE;
D O I
10.1002/aenm.201601825
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Zero-strain and long-term stability of nanoscale lithium titanate (LTO) anode materials make possible the fabrication of exceptionally stable lithium ion batteries. But one issue must be considered that of nanostructure-induced relaxation in 2D LTO nanosheets which profoundly modifies their Li storage properties and structural stability. Excessively intercalated Li ions at both 8a and 16c sites trigger nucleation of the relaxed LTO structure in the nearsurface region, which impedes Li-ion diffusion and causes the increasing polarization of LTO nanosheet electrodes. Nuclei of relaxed LTO then undergo isotropic growth along the 3D Li-ion pathways in LTO to completely convert near-surface regions into relaxed LTO. With increasing population of trapped Li ions, the enhanced conductivity due to Ti4+/Ti3+ reduction gradually eliminates the raised polarization. In the meantime, spontaneous electrolyte/LTO reduction to form the solid electrolyte interphase starts playing a major role in capacity loss once the transformation of near-surface region into relaxed LTO becomes saturated. Elucidation of these fundamental intercalation-induced surface structure transformations contribute greatly into the design of highly performing 2D nanoscaled LTO and other electrode materials.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Cold sintering process for fabrication of a high volumetric capacity Li4Ti5O12 anode
    Seo, Joo-Hwan
    Verlinde, Kris
    Rajagopalan, Ramakrishnan
    Gomez, Enrique D.
    Mallouk, Thomas E.
    Randall, Clive A.
    MATERIALS SCIENCE AND ENGINEERING B-ADVANCED FUNCTIONAL SOLID-STATE MATERIALS, 2019, 250
  • [2] Preparation and performance of spinel Li4Ti5O12 anode material
    Zhang, H.-Y. (hyzhang@gdut.edu.cn), 1600, Chinese Ceramic Society, Baiwanzhuang, Beijing, 100831, China (41):
  • [3] Preparation of Li4Ti5O12 as anode material by solution method
    Gu, Fang
    ADVANCED RESEARCH ON ARCHITECTONICS AND MATERIALS, 2012, 511 : 101 - 104
  • [4] Preparation and properties of Li4Ti5O12 nanotubes as anode material
    Ma, Guangqiang
    Cheng, Min
    FERROELECTRICS, 2023, 608 (01) : 145 - 152
  • [5] Structural Modification, Synthesis Mechanism and Properties Analysis of Li4Ti5O12 Anode Materials
    Liu, Cheng
    Rong, Ju
    Zhang, Yannan
    Yu, Xiaohua
    Liu, Jianxiong
    Zhan, Zhaolin
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2017, 12 (10): : 9914 - 9924
  • [6] Progress in research on Li4Ti5O12 as anode for electrochemical devices
    Chen, F
    Liang, HC
    Li, RG
    Liu, L
    Deng, ZH
    JOURNAL OF INORGANIC MATERIALS, 2005, 20 (03) : 537 - 544
  • [7] Preparation and electrochemical performances of Li4Ti5O12 as anode material
    Gu, Fang
    RENEWABLE AND SUSTAINABLE ENERGY II, PTS 1-4, 2012, 512-515 : 1976 - 1979
  • [8] Electrochemical properties of Li4Ti5O12/C and Li4Ti5O12/C/Ag nanomaterials
    I. A. Stenina
    A. N. Sobolev
    A. A. Kuz’mina
    T. L. Kulova
    A. M. Skundin
    N. Yu. Tabachkova
    A. B. Yaroslavtsev
    Inorganic Materials, 2017, 53 : 1039 - 1045
  • [9] Featured properties of Li+-based battery anode: Li4Ti5O12
    Thi Dieu Hien Nguyen
    Hai Duong Pham
    Lin, Shih-Yang
    Lin, Ming-Fa
    RSC ADVANCES, 2020, 10 (24) : 14071 - 14079
  • [10] Electrochemical Properties of Li4Ti5O12/C and Li4Ti5O12/C/Ag Nanomaterials
    Stenina, I. A.
    Sobolev, A. N.
    Kuz'mina, A. A.
    Kulova, T. L.
    Skundin, A. M.
    Tabachkova, N. Yu.
    Yaroslavtsev, A. B.
    INORGANIC MATERIALS, 2017, 53 (10) : 1039 - 1045