Chaos control applied to piezoelectric vibration-based energy harvesting systems

被引:19
作者
Barbosa, W. O. V. [1 ]
De Paula, A. S. [1 ]
Savi, M. A. [2 ]
Inman, D. J. [3 ]
机构
[1] Univ Brasilia, Dept Mech Engn, BR-70910900 Brasilia, DF, Brazil
[2] Univ Fed Rio de Janeiro, COPPE, Dept Mech Engn, Ctr Nonlinear Mech, BR-21941972 Rio De Janeiro, RJ, Brazil
[3] Univ Michigan, Dept Aerosp Engn, Ann Arbor, MI 48109 USA
关键词
Lyapunov Exponent; European Physical Journal Special Topic; Chaotic Attractor; Energy Harvesting; Maximum Lyapunov Exponent;
D O I
10.1140/epjst/e2015-02589-1
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Chaotic behavior presents intrinsic richness due to the existence of an infinity number of unstable periodic orbits (UPOs). The possibility of stabilizing these periodic patterns with a small amount of energy makes this kind of response interesting to various dynamical systems. Energy harvesting has as a goal the use of available mechanical energy by promoting a conversion into electrical energy. The combination of these two approaches may establish autonomous systems where available environmental mechanical energy can be employed for control purposes. Two different goals can be defined as priority, allowing a change between them: vibration reduction and energy harvesting enhancement. This work deals with the use of harvested energy to perform chaos control. Both control actuation and energy harvesting are induced employing piezoelectric materials, in a simultaneous way. A bistable piezomagnetoelastic structure subjected to harmonic excitations is investigated as a case study. Numerical simulations show situations where it is possible to perform chaos control using only the energy generated by the harvesting system.
引用
收藏
页码:2787 / 2801
页数:15
相关论文
共 25 条
[1]   EXPLORING CHAOTIC MOTION THROUGH PERIODIC-ORBITS [J].
AUERBACH, D ;
CVITANOVIC, P ;
ECKMANN, JP ;
GUNARATNE, G ;
PROCACCIA, I .
PHYSICAL REVIEW LETTERS, 1987, 58 (23) :2387-2389
[2]   Active control of nonlinear vibration of sandwich piezoelectric beams: A simplified approach [J].
Belouettar, S. ;
Azrar, L. ;
Daya, E. M. ;
Laptev, V. ;
Potier-Ferry, M. .
COMPUTERS & STRUCTURES, 2008, 86 (3-5) :386-397
[3]  
Cunningham W.J., 1954, MATHEMATICS, V40, P708
[4]   Energy harvesting in a nonlinear piezomagnetoelastic beam subjected to random excitation [J].
De Paula, Aline S. ;
Inman, Daniel J. ;
Savi, Marcelo A. .
MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2015, 54-55 :405-416
[5]   Comparative analysis of chaos control methods: A mechanical system case study [J].
de Paula, Aline Souza ;
Savi, Marcelo Amorim .
INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 2011, 46 (08) :1076-1089
[6]   Power generation and shunt damping performance of a single crystal lead magnesium niobate-lead zirconate titanate unimorph: Analysis and experiment [J].
Erturk, A. ;
Bilgen, O. ;
Inman, D. J. .
APPLIED PHYSICS LETTERS, 2008, 93 (22)
[7]   A piezomagnetoelastic structure for broadband vibration energy harvesting [J].
Erturk, A. ;
Hoffmann, J. ;
Inman, D. J. .
APPLIED PHYSICS LETTERS, 2009, 94 (25)
[8]   Issues in mathematical modeling of piezoelectric energy harvesters [J].
Erturk, A. ;
Inman, D. J. .
SMART MATERIALS AND STRUCTURES, 2008, 17 (06)
[9]   A distributed parameter electromechanical model for cantilevered piezoelectric energy harvesters [J].
Erturk, A. ;
Inman, D. J. .
JOURNAL OF VIBRATION AND ACOUSTICS-TRANSACTIONS OF THE ASME, 2008, 130 (04)
[10]   An experimentally validated bimorph cantilever model for piezoelectric energy harvesting from base excitations [J].
Erturk, A. ;
Inman, D. J. .
SMART MATERIALS AND STRUCTURES, 2009, 18 (02)