Homological mirror symmetry for log Calabi-Yau surfaces

被引:8
|
作者
Hacking, Paul [1 ]
Keating, Ailsa
Lutz, Wendelin
机构
[1] Univ Massachusetts, Dept Math & Stat, Amherst, MA 01003 USA
基金
美国国家科学基金会;
关键词
LOGARITHMIC DEGENERATION DATA; MONOTONE LAGRANGIAN TORI; DEL PEZZO SURFACES; LEFSCHETZ FIBRATIONS; CATEGORIES; TRANSFORMATIONS; GEOMETRY;
D O I
10.2140/gt.2022.26.3747
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given a log Calabi-Yau surface Y with maximal boundary D and distinguished com-plex structure, we explain how to construct a mirror Lefschetz fibration w: M-* C, where M is a Weinstein four-manifold, such that the directed Fukaya category of w is isomorphic to DbCoh(Y ), and the wrapped Fukaya category DbW(M) is isomorphic to DbCoh(Y \ D). We construct an explicit isomorphism between M and the total space of the almost-toric fibration arising in work of Gross, Hacking and Keel (Publ. Math. Inst. Hautes etudes Sci. 122 (2015) 65-168); when D is negative definite this is expected to be the Milnor fibre of a smoothing of the dual cusp of D. We also match our mirror potential w with existing constructions for a range of special cases of (Y, D), notably those of Auroux, Katzarkov and Orlov (Invent. Math. 166 (2006) 537-582) and Abouzaid (Selecta Math. 15 (2009) 189-270).
引用
收藏
页码:3747 / 3833
页数:88
相关论文
共 50 条
  • [31] A Note on Finsler Version of Calabi-Yau Theorem
    Yin, Songting
    Wang, Ruixin
    Zhang, Pan
    ADVANCES IN MATHEMATICAL PHYSICS, 2018, 2018
  • [32] Convergence of volume forms on a family of log Calabi-Yau varieties to a non-Archimedean measure
    Shivaprasad, Sanal
    MATHEMATISCHE ZEITSCHRIFT, 2022, 301 (04) : 3849 - 3875
  • [33] Frobenius map on local Calabi-Yau manifolds
    Shapiro, I.
    JOURNAL OF MATHEMATICAL PHYSICS, 2009, 50 (02)
  • [34] Homological mirror symmetry for hypersurface cusp singularities
    Keating, Ailsa
    SELECTA MATHEMATICA-NEW SERIES, 2018, 24 (02): : 1411 - 1452
  • [35] Two Moduli Spaces of Calabi-Yau type
    Barros, Ignacio
    Mullane, Scott
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2021, 2021 (20) : 15833 - 15849
  • [36] Calabi-Yau cones from contact reduction
    Conti, Diego
    Fino, Anna
    ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2010, 38 (01) : 93 - 118
  • [37] Non-Kahler Calabi-Yau Manifolds
    Tseng, Li-Sheng
    Yau, Shing-Tung
    STRING-MATH 2011, 2012, 85 : 241 - +
  • [38] On Autoequivalences of Some Calabi-Yau and Hyperkahler Varieties
    Ploog, David
    Sosna, Pawel
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2014, 2014 (22) : 6094 - 6110
  • [39] The nondegenerate generalized Kahler Calabi-Yau problem
    Apostolov, Vestislav
    Streets, Jeffrey
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2021, 777 : 1 - 48
  • [40] THE EMBEDDED CALABI-YAU CONJECTURE FOR FINITE GENUS
    Meeks, William H., III
    Perez, Joaquin
    Ros, Antonio
    DUKE MATHEMATICAL JOURNAL, 2021, 170 (13) : 2891 - 2956