Homological mirror symmetry for log Calabi-Yau surfaces

被引:8
|
作者
Hacking, Paul [1 ]
Keating, Ailsa
Lutz, Wendelin
机构
[1] Univ Massachusetts, Dept Math & Stat, Amherst, MA 01003 USA
基金
美国国家科学基金会;
关键词
LOGARITHMIC DEGENERATION DATA; MONOTONE LAGRANGIAN TORI; DEL PEZZO SURFACES; LEFSCHETZ FIBRATIONS; CATEGORIES; TRANSFORMATIONS; GEOMETRY;
D O I
10.2140/gt.2022.26.3747
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given a log Calabi-Yau surface Y with maximal boundary D and distinguished com-plex structure, we explain how to construct a mirror Lefschetz fibration w: M-* C, where M is a Weinstein four-manifold, such that the directed Fukaya category of w is isomorphic to DbCoh(Y ), and the wrapped Fukaya category DbW(M) is isomorphic to DbCoh(Y \ D). We construct an explicit isomorphism between M and the total space of the almost-toric fibration arising in work of Gross, Hacking and Keel (Publ. Math. Inst. Hautes etudes Sci. 122 (2015) 65-168); when D is negative definite this is expected to be the Milnor fibre of a smoothing of the dual cusp of D. We also match our mirror potential w with existing constructions for a range of special cases of (Y, D), notably those of Auroux, Katzarkov and Orlov (Invent. Math. 166 (2006) 537-582) and Abouzaid (Selecta Math. 15 (2009) 189-270).
引用
收藏
页码:3747 / 3833
页数:88
相关论文
共 50 条
  • [1] Homological mirror symmetry for Calabi-Yau hypersurfaces in projective space
    Sheridan, Nick
    INVENTIONES MATHEMATICAE, 2015, 199 (01) : 1 - 186
  • [2] Homological Mirror Symmetry for Local Calabi-Yau Manifolds via SYZ
    Chan, Kwokwai
    TAIWANESE JOURNAL OF MATHEMATICS, 2017, 21 (03): : 505 - 529
  • [3] LOG BPS NUMBERS OF LOG CALABI-YAU SURFACES
    Choi, Jinwon
    van Garrel, Michel
    Katz, Sheldon
    Takahashi, Nobuyoshi
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2021, 374 (01) : 687 - 732
  • [4] Skew Calabi-Yau algebras and homological identities
    Reyes, Manuel
    Rogalski, Daniel
    Zhang, James J.
    ADVANCES IN MATHEMATICS, 2014, 264 : 308 - 354
  • [5] Enumeration of holomorphic cylinders in log Calabi-Yau surfaces. I
    Yu, Tony Yue
    MATHEMATISCHE ANNALEN, 2016, 366 (3-4) : 1649 - 1675
  • [6] A GLOBAL MIRROR SYMMETRY FRAMEWORK FOR THE LANDAU-GINZBURG/CALABI-YAU CORRESPONDENCE
    Chiodo, Alessandro
    Ruan, Yongbin
    ANNALES DE L INSTITUT FOURIER, 2011, 61 (07) : 2803 - 2864
  • [7] Deformations of log Calabi-Yau pairs can be obstructed
    Felten, Simon
    Petracci, Andrea
    Robins, Sharon
    MATHEMATICAL RESEARCH LETTERS, 2023, 30 (05) : 1357 - 1374
  • [8] Quantum mirrors of log Calabi-Yau surfaces and higher-genus curve counting
    Bousseau, Pierrick
    COMPOSITIO MATHEMATICA, 2020, 156 (02) : 360 - 411
  • [9] LANDAU-GINZBURG/CALABI-YAU CORRESPONDENCE, GLOBAL MIRROR SYMMETRY AND ORLOV EQUIVALENCE
    Chiodo, Alessandro
    Iritani, Hiroshi
    Ruan, Yongbin
    PUBLICATIONS MATHEMATIQUES DE L IHES, 2014, (119): : 127 - 216
  • [10] Log Hodge Groups on a Toric Calabi-Yau Degeneration
    Ruddat, Helge
    MIRROR SYMMETRY AND TROPICAL GEOMETRY, 2010, 527 : 113 - 164