An integral equation method for the inverse conductivity problem

被引:11
作者
Ciulli, S
Pidcock, MK [1 ]
Sebu, C
机构
[1] Oxford Brookes Univ, Dept Math Sci, Oxford 0X33 1HX, England
[2] Univ Montpellier 2, Lab Phys Math & Theor, F-34095 Montpellier, France
关键词
inverse conductivity problem; nonlinear inverse problems; electrical impedance tomography; land mine detection;
D O I
10.1016/j.physleta.2004.03.060
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present an image reconstruction algorithm for the inverse conductivity problem based on reformulating the problem in terms of integral equations. We use as data the values of injected electric currents and of the corresponding induced boundary potentials, as well as the boundary values of the electrical conductivity. We have used a priori information to find a regularized conductivity distribution by first solving a Fredholm integral equation of the second kind for the Laplacian of the potential, and then by solving a first order partial differential equation for the regularized conductivity itself. Many of the calculations involved in the method can be achieved analytically using the eigenfunctions of an integral operator defined in the Letter. (C) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:253 / 267
页数:15
相关论文
共 24 条
  • [1] AN IDENTIFICATION PROBLEM FOR AN ELLIPTIC EQUATION IN 2 VARIABLES
    ALESSANDRINI, G
    [J]. ANNALI DI MATEMATICA PURA ED APPLICATA, 1986, 145 : 265 - 295
  • [2] [Anonymous], REGULARIZATION TOOLS
  • [3] Numerical implementation of two noniterative methods for locating inclusions by impedance tomography
    Brühl, M
    Hanke, M
    [J]. INVERSE PROBLEMS, 2000, 16 (04) : 1029 - 1042
  • [4] A direct impedance tomography algorithm for locating small inhomogeneities
    Brühl, M
    Hanke, M
    Vogelius, MS
    [J]. NUMERISCHE MATHEMATIK, 2003, 93 (04) : 635 - 654
  • [5] Calderon A.P., 1980, Seminar on Numerical Analysis and its Applications to Continuum Physics, Rio de Janeiro, 1980, P65, DOI DOI 10.1590/S0101-82052006000200002
  • [6] Identification of conductivity imperfections of small diameter by boundary measurements. Continous dependence and computational reconstruction
    Cedio-Fengya, DJ
    Moskow, S
    Vogelius, MS
    [J]. INVERSE PROBLEMS, 1998, 14 (03) : 553 - 595
  • [7] CHAVENT G, 1999, INVERSE PROBL ENG, P91
  • [8] Image reconstruction in electrical impedance tomography using an integral equation of the Lippmann-Schwinger type
    Ciulli, S
    Pidcock, MK
    Spearman, TD
    Stroian, A
    [J]. PHYSICS LETTERS A, 2000, 271 (5-6) : 377 - 384
  • [9] On the inverse conductivity problem in the half space
    Ciulli, S
    Pidcock, MK
    Sebu, C
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2003, 83 (11): : 755 - 765
  • [10] Ciulli S., 1975, Physics Reports. Physics Letters Section C, V17c, P133, DOI 10.1016/0370-1573(75)90006-X