A memristive deep belief neural network based on silicon synapses

被引:44
作者
Wang, Wei [1 ,2 ]
Danial, Loai [1 ,5 ]
Li, Yang [1 ,2 ]
Herbelin, Eric [1 ]
Pikhay, Evgeny [3 ]
Roizin, Yakov [3 ]
Hoffer, Barak [1 ]
Wang, Zhongrui [4 ]
Kvatinsky, Shahar [1 ]
机构
[1] Technion Israel Inst Technol, Andrew & Erna Viterbi Fac Elect & Comp Engn, Haifa, Israel
[2] Peng Cheng Lab, Shenzhen, Peoples R China
[3] Tower Semicond, Migdal Haemeq, Israel
[4] Univ Hong Kong, Dept Elect & Elect Engn, Hong Kong, Peoples R China
[5] Intel Corp, IDC, Haifa, Israel
基金
欧洲研究理事会;
关键词
IN-MEMORY; INJECTION; ALGORITHM;
D O I
10.1038/s41928-022-00878-9
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Memristor-based neuromorphic computing could overcome the limitations of traditional von Neumann computing architectures-in which data are shuffled between separate memory and processing units-and improve the performance of deep neural networks. However, this will require accurate synaptic-like device performance, and memristors typically suffer from poor yield and a limited number of reliable conductance states. Here we report floating-gate memristive synaptic devices that are fabricated in a commercial complementary metal-oxide-semiconductor process. These silicon synapses offer analogue tunability, high endurance, long retention time, predictable cycling degradation, moderate device-to-device variation and high yield. They also provide two orders of magnitude higher energy efficiency for multiply-accumulate operations than graphics processing units. We use two 12 x 8 arrays of memristive devices for the in situ training of a 19 x 8 memristive restricted Boltzmann machine for pattern recognition via a gradient descent algorithm based on contrastive divergence. We then create a memristive deep belief neural network consisting of three memristive restricted Boltzmann machines. We test this system using the modified National Institute of Standards and Technology dataset, demonstrating a recognition accuracy of up to 97.05%.
引用
收藏
页码:870 / 880
页数:19
相关论文
共 59 条
[31]   Versatile stochastic dot product circuits based on nonvolatile memories for high performance neurocomputing and neurooptimization [J].
Mahmoodi, M. R. ;
Prezioso, M. ;
Strukov, D. B. .
NATURE COMMUNICATIONS, 2019, 10 (1)
[32]   Accurate Program/Verify Schemes of Resistive Switching Memory (RRAM) for In-Memory Neural Network Circuits [J].
Milo, Valerio ;
Glukhov, Artem ;
Perez, Eduardo ;
Zambelli, Cristian ;
Lepri, Nicola ;
Mahadevaiah, Mamathamba Kalishettyhalli ;
Quesada, Emilio Perez-Bosch ;
Olivo, Piero ;
Wenger, Christian ;
Ielmini, Daniele .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2021, 68 (08) :3832-3837
[33]   Mixed-Precision Deep Learning Based on Computational Memory [J].
Nandakumar, S. R. ;
Le Gallo, Manuel ;
Piveteau, Christophe ;
Joshi, Vinay ;
Mariani, Giovanni ;
Boybat, Irem ;
Karunaratne, Geethan ;
Khaddam-Aljameh, Riduan ;
Egger, Urs ;
Petropoulos, Anastasios ;
Antonakopoulos, Theodore ;
Rajendran, Bipin ;
Sebastian, Abu ;
Eleftheriou, Evangelos .
FRONTIERS IN NEUROSCIENCE, 2020, 14
[34]   Mixed-precision architecture based on computational memory for training deep neural networks [J].
Nandakumar, S. R. ;
Le Gallo, Manuel ;
Boybat, Irem ;
Rajendran, Bipin ;
Sebastian, Abu ;
Eleftheriou, Evangelos .
2018 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS), 2018,
[35]   Ferroelectric ternary content-addressable memory for one-shot learning [J].
Ni, Kai ;
Yin, Xunzhao ;
Laguna, Ann Franchesca ;
Joshi, Siddharth ;
Duenkel, Stefan ;
Trentzsch, Martin ;
Mueeller, Johannes ;
Beyer, Sven ;
Niemier, Michael ;
Hu, Xiaobo Sharon ;
Datta, Suman .
NATURE ELECTRONICS, 2019, 2 (11) :521-529
[36]   Flash memory cells - An overview [J].
Pavan, P ;
Bez, R ;
Olivo, P ;
Zanoni, E .
PROCEEDINGS OF THE IEEE, 1997, 85 (08) :1248-1271
[37]   Floating Gate Synapses With Spike-Time-Dependent Plasticity [J].
Ramakrishnan, Shubha ;
Hasler, Paul E. ;
Gordon, Christal .
IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS, 2011, 5 (03) :244-252
[38]   Vowel recognition with four coupled spin-torque nano-oscillators [J].
Romera, Miguel ;
Talatchian, Philippe ;
Tsunegi, Sumito ;
Araujo, Flavio Abreu ;
Cros, Vincent ;
Bortolotti, Paolo ;
Trastoy, Juan ;
Yakushiji, Kay ;
Fukushima, Akio ;
Kubota, Hitoshi ;
Yuasa, Shinji ;
Ernoult, Maxence ;
Vodenicarevic, Damir ;
Hirtzlin, Tifenn ;
Locatelli, Nicolas ;
Querlioz, Damien ;
Grollier, Julie .
NATURE, 2018, 563 (7730) :230-+
[39]   Towards spike-based machine intelligence with neuromorphic computing [J].
Roy, Kaushik ;
Jaiswal, Akhilesh ;
Panda, Priyadarshini .
NATURE, 2019, 575 (7784) :607-617
[40]   Temporal correlation detection using computational phase-change memory [J].
Sebastian, Abu ;
Tuma, Tomas ;
Papandreou, Nikolaos ;
Le Gallo, Manuel ;
Kull, Lukas ;
Parnell, Thomas ;
Eleftheriou, Evangelos .
NATURE COMMUNICATIONS, 2017, 8