A memristive deep belief neural network based on silicon synapses

被引:44
作者
Wang, Wei [1 ,2 ]
Danial, Loai [1 ,5 ]
Li, Yang [1 ,2 ]
Herbelin, Eric [1 ]
Pikhay, Evgeny [3 ]
Roizin, Yakov [3 ]
Hoffer, Barak [1 ]
Wang, Zhongrui [4 ]
Kvatinsky, Shahar [1 ]
机构
[1] Technion Israel Inst Technol, Andrew & Erna Viterbi Fac Elect & Comp Engn, Haifa, Israel
[2] Peng Cheng Lab, Shenzhen, Peoples R China
[3] Tower Semicond, Migdal Haemeq, Israel
[4] Univ Hong Kong, Dept Elect & Elect Engn, Hong Kong, Peoples R China
[5] Intel Corp, IDC, Haifa, Israel
基金
欧洲研究理事会;
关键词
IN-MEMORY; INJECTION; ALGORITHM;
D O I
10.1038/s41928-022-00878-9
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Memristor-based neuromorphic computing could overcome the limitations of traditional von Neumann computing architectures-in which data are shuffled between separate memory and processing units-and improve the performance of deep neural networks. However, this will require accurate synaptic-like device performance, and memristors typically suffer from poor yield and a limited number of reliable conductance states. Here we report floating-gate memristive synaptic devices that are fabricated in a commercial complementary metal-oxide-semiconductor process. These silicon synapses offer analogue tunability, high endurance, long retention time, predictable cycling degradation, moderate device-to-device variation and high yield. They also provide two orders of magnitude higher energy efficiency for multiply-accumulate operations than graphics processing units. We use two 12 x 8 arrays of memristive devices for the in situ training of a 19 x 8 memristive restricted Boltzmann machine for pattern recognition via a gradient descent algorithm based on contrastive divergence. We then create a memristive deep belief neural network consisting of three memristive restricted Boltzmann machines. We test this system using the modified National Institute of Standards and Technology dataset, demonstrating a recognition accuracy of up to 97.05%.
引用
收藏
页码:870 / 880
页数:19
相关论文
共 59 条
[1]   Pattern classification by memristive crossbar circuits using ex situ and in situ training [J].
Alibart, Fabien ;
Zamanidoost, Elham ;
Strukov, Dmitri B. .
NATURE COMMUNICATIONS, 2013, 4
[2]   Equivalent-accuracy accelerated neural-network training using analogue memory [J].
Ambrogio, Stefano ;
Narayanan, Pritish ;
Tsai, Hsinyu ;
Shelby, Robert M. ;
Boybat, Irem ;
di Nolfo, Carmelo ;
Sidler, Severin ;
Giordano, Massimo ;
Bodini, Martina ;
Farinha, Nathan C. P. ;
Killeen, Benjamin ;
Cheng, Christina ;
Jaoudi, Yassine ;
Burr, Geoffrey W. .
NATURE, 2018, 558 (7708) :60-+
[3]  
[Anonymous], [No title captured]
[4]   Neuromorphic computing with multi-memristive synapses [J].
Boybat, Irem ;
Le Gallo, Manuel ;
Nandakumar, S. R. ;
Moraitis, Timoleon ;
Parnell, Thomas ;
Tuma, Tomas ;
Rajendran, Bipin ;
Leblebici, Yusuf ;
Sebastian, Abu ;
Eleftheriou, Evangelos .
NATURE COMMUNICATIONS, 2018, 9
[5]   Experimental Demonstration and Tolerancing of a Large-Scale Neural Network (165 000 Synapses) Using Phase-Change Memory as the Synaptic Weight Element [J].
Burr, Geoffrey W. ;
Shelby, Robert M. ;
Sidler, Severin ;
di Nolfo, Carmelo ;
Jang, Junwoo ;
Boybat, Irem ;
Shenoy, Rohit S. ;
Narayanan, Pritish ;
Virwani, Kumar ;
Giacometti, Emanuele U. ;
Kuerdi, Bulent N. ;
Hwang, Hyunsang .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2015, 62 (11) :3498-3507
[6]   A fully integrated reprogrammable memristor-CMOS system for efficient multiply-accumulate operations [J].
Cai, Fuxi ;
Correll, Justin M. ;
Lee, Seung Hwan ;
Lim, Yong ;
Bothra, Vishishtha ;
Zhang, Zhengya ;
Flynn, Michael P. ;
Lu, Wei D. .
NATURE ELECTRONICS, 2019, 2 (07) :290-299
[7]   Mitigating Asymmetric Nonlinear Weight Update Effects in Hardware Neural Network Based on Analog Resistive Synapse [J].
Chang, Chih-Cheng ;
Chen, Pin-Chun ;
Chou, Teyuh ;
Wang, I-Ting ;
Hudec, Boris ;
Chang, Che-Chia ;
Tsai, Chia-Ming ;
Chang, Tian-Sheuan ;
Hou, Tuo-Hung .
IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS, 2018, 8 (01) :116-124
[8]  
Chen P.-Y., 2017, 2017 IEEE International Electron Devices Meeting (IEDM), p6.1.1
[9]   CMOS-integrated memristive non-volatile computing-in-memory for AI edge processors [J].
Chen, Wei-Hao ;
Dou, Chunmeng ;
Li, Kai-Xiang ;
Lin, Wei-Yu ;
Li, Pin-Yi ;
Huang, Jian-Hao ;
Wang, Jing-Hong ;
Wei, Wei-Chen ;
Xue, Cheng-Xin ;
Chiu, Yen-Cheng ;
King, Ya-Chin ;
Lin, Chorng-Jung ;
Liu, Ren-Shuo ;
Hsieh, Chih-Cheng ;
Tang, Kea-Tiong ;
Yang, J. Joshua ;
Ho, Mon-Shu ;
Chang, Meng-Fan .
NATURE ELECTRONICS, 2019, 2 (09) :420-428
[10]  
Cheng HY, 2017, INT EL DEVICES MEET