Shear dynamics of nanoconfined ionic liquids

被引:54
|
作者
Canova, Filippo Federici [1 ]
Matsubara, Hiroki [2 ]
Mizukami, Masashi [3 ]
Kurihara, Kazue [1 ,3 ]
Shluger, Alexander L. [1 ,4 ,5 ]
机构
[1] Tohoku Univ, Adv Inst Mat Res, Aoba Ku, Sendai, Miyagi 9808577, Japan
[2] Tohoku Univ, Sch Engn, Dept Appl Chem, Aoba Ku, Sendai, Miyagi 9808579, Japan
[3] Tohoku Univ, Inst Multidisciplinary Res Adv Mat, Aoba Ku, Sendai, Miyagi 9808577, Japan
[4] UCL, Dept Phys & Astron, London WC1E 6BT, England
[5] UCL, London Ctr Nanotechnol, London WC1E 6BT, England
基金
日本科学技术振兴机构;
关键词
MOLECULAR-DYNAMICS; FORCE-FIELD; LUBRICANT; FRICTION; SURFACES; SILICA; CAPACITANCE; INTERFACE; FILMS;
D O I
10.1039/c4cp00005f
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We used molecular dynamics simulations to study the structure and shear dynamics of two ionic liquids (ILs) featuring the same cation 1-butyl-3-methyl-imidazolium or [BMIM], paired with bis(trifluoromethane-sulphonyl) amide [NTF2] and tetrafluoroborate [BF4] anions, confined between two hydroxylated silica surfaces. The results demonstrate how the shape of IL molecules affects their layering structure at hydroxylated silica surfaces and how the layered structure of nanoconfined liquids determines their dynamical properties at the molecular level. When [BMIM][NTF2] is sheared, larger molecular fluctuations in the inner layers are required to stabilise the system, and the resulting dynamics is irregular. The alternating charged layers in [BMIM][BF4] allow the system to stabilise through smaller oscillations, and the layers appear to shear on top of each other in a laminar fashion. The simulated dynamics explains qualitatively the relative change in viscosity that the two ILs exhibit when confined, as has been observed in previous experiments.
引用
收藏
页码:8247 / 8256
页数:10
相关论文
共 50 条
  • [1] Resonance shear measurement of nanoconfined ionic liquids
    Ueno, Kazuhide
    Kasuya, Motohiro
    Watanabe, Masayoshi
    Mizukami, Masashi
    Kurihara, Kazue
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2010, 12 (16) : 4066 - 4071
  • [2] Nanoconfined Ionic Liquids
    Zhang, Shiguo
    Zhang, Jiaheng
    Zhang, Yan
    Deng, Youquan
    CHEMICAL REVIEWS, 2017, 117 (10) : 6755 - 6833
  • [3] Unravelling nanoconfined films of ionic liquids
    Lee, Alpha A.
    Vella, Dominic
    Perkin, Susan
    Goriely, Alain
    JOURNAL OF CHEMICAL PHYSICS, 2014, 141 (09):
  • [4] A review of the structure and dynamics of nanoconfined water and ionic liquids via molecular dynamics simulation
    Masumeh Foroutan
    S. Mahmood Fatemi
    Farshad Esmaeilian
    The European Physical Journal E, 2017, 40
  • [5] A review of the structure and dynamics of nanoconfined water and ionic liquids via molecular dynamics simulation
    Foroutan, Masumeh
    Fatemi, S. Mahmood
    Esmaeilian, Farshad
    EUROPEAN PHYSICAL JOURNAL E, 2017, 40 (02):
  • [6] Nanoconfined ionic liquids: A computational study
    Otero-Mato, Jose M.
    Montes-Campos, Hadrian
    Cabeza, Oscar
    Gallego, Luis J.
    Varela, Luis M.
    JOURNAL OF MOLECULAR LIQUIDS, 2020, 320
  • [7] Dynamics of Nanoconfined Supercooled Liquids
    Richert, R.
    ANNUAL REVIEW OF PHYSICAL CHEMISTRY, VOL 62, 2011, 62 : 65 - 84
  • [8] Hydrogen bonding of nanoconfined water in ionic liquids
    Abe, Hiroshi
    Yoshiichi, Yuto
    Hirano, Takaaki
    Ohkubo, Taichi
    Kishimura, Hiroaki
    JOURNAL OF MOLECULAR LIQUIDS, 2022, 367
  • [9] Nanoconfined ionic liquids under electric fields
    Xie, Guoxin
    Luo, Jianbin
    Guo, Dan
    Liu, Shuhai
    APPLIED PHYSICS LETTERS, 2010, 96 (04)
  • [10] Nanoconfined ionic liquids: Disentangling electrostatic and viscous forces
    Lhermerout, Romain
    Perkin, Susan
    PHYSICAL REVIEW FLUIDS, 2018, 3 (01):