Dedalus: A flexible framework for numerical simulations with spectral methods

被引:248
|
作者
Burns, Keaton J. [1 ,2 ,3 ]
Vasil, Geoffrey M. [4 ]
Oishi, Jeffrey S. [5 ]
Lecoanet, Daniel [6 ,7 ]
Brown, Benjamin P. [8 ,9 ]
机构
[1] MIT, Dept Math, Cambridge, MA 02139 USA
[2] MIT, Dept Phys, Cambridge, MA 02139 USA
[3] Flatiron Inst, Ctr Computat Astrophys, New York, NY 10010 USA
[4] Univ Sydney, Sch Math & Stat, Sydney, NSW 2006, Australia
[5] Bates Coll, Dept Phys & Astron, Lewiston, ME 04240 USA
[6] Princeton Ctr Theoret Sci, Princeton, NJ 08544 USA
[7] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA
[8] Univ Colorado, Lab Atmospher & Space Phys, Boulder, CO 80309 USA
[9] Univ Colorado, Dept Astrophys & Planetary Sci, Boulder, CO 80309 USA
来源
PHYSICAL REVIEW RESEARCH | 2020年 / 2卷 / 02期
基金
澳大利亚研究理事会;
关键词
MODEL; WAVE; CONVECTION; FLOW; CIRCULATION; INSTABILITY; ATMOSPHERE; TURBULENCE; EQUATIONS; TRANSPORT;
D O I
10.1103/PhysRevResearch.2.023068
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Numerical solutions of partial differential equations enable a broad range of scientific research. The Dedalus project is a flexible, open-source, parallelized computational framework for solving general partial differential equations using spectral methods. Dedalus translates plain-text strings describing partial differential equations into efficient solvers. This paper details the numerical method that enables this translation, describes the design and implementation of the codebase, and illustrates its capabilities with a variety of example problems. The numerical method is a first-order generalized tau formulation that discretizes equations into banded matrices. This method is implemented with an object-oriented design. Classes for spectral bases and domains manage the discretization and automatic parallel distribution of variables. Discretized fields and mathematical operators are symbolically manipulated with a basic computer algebra system. Initial value, boundary value, and eigenvalue problems are efficiently solved using high-performance linear algebra, transform, and parallel communication libraries. Custom analysis outputs can also be specified in plain text and stored in self-describing portable formats. The performance of the code is evaluated with a parallel scaling benchmark and a comparison to a finite-volume code. The features and flexibility of the codebase are illustrated by solving several examples: the nonlinear Schrodinger equation on a graph, a supersonic magnetohydrodynamic vortex, quasigeostrophic flow, Stokes flow in a cylindrical annulus, normal modes of a radiative atmosphere, and diamagnetic levitation.
引用
收藏
页数:39
相关论文
共 50 条
  • [31] Numerical Simulations of Vortex Induced Vibrations of Flexible Cylinder for Hydrokinetic Energy Harvesting
    Kong, Haonan
    Roussinova, Vesselina
    Stoilov, Vesselin
    PROCEEDINGS OF THE 39TH IAHR WORLD CONGRESS, 2022, : 2492 - 2500
  • [32] Modal characteristics of a flexible cylinder in turbulent axial flow from numerical simulations
    De Ridder, Jeroen
    Degroote, Joris
    Van Tichelen, Katrien
    Schuurmans, Paul
    Vierendeels, Jan
    JOURNAL OF FLUIDS AND STRUCTURES, 2013, 43 : 110 - 123
  • [33] Dynamics of a flexible fibre in a sheared two-dimensional foam: Numerical simulations
    Langlois, Vincent J.
    Hutzler, Stefan
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2017, 534 : 105 - 111
  • [34] Numerical simulation of particulate processes for control and estimation by spectral methods
    Bueck, Andreas
    Klaunick, Guenter
    Kumar, Jitendra
    Peglow, Mirko
    Tsotsas, Evangelos
    AICHE JOURNAL, 2012, 58 (08) : 2309 - 2319
  • [35] Numerical simulations of drumlin formation
    Fannon, J. S.
    Fowler, A. C.
    Moyles, I. R.
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2017, 473 (2204):
  • [36] MEAN FIELD LIMITS FOR INTERACTING DIFFUSIONS WITH COLORED NOISE: PHASE TRANSITIONS AND SPECTRAL NUMERICAL METHODS
    Gomes, S. N.
    Pavliotis, G. A.
    Vaes, U.
    MULTISCALE MODELING & SIMULATION, 2020, 18 (03) : 1343 - 1370
  • [37] Fast numerical treatment of nonlinear wave equations by spectral methods
    Skjaeraasen, Olaf
    Robinson, P. A.
    Newman, D. L.
    PHYSICS OF PLASMAS, 2011, 18 (02)
  • [38] The effects of numerical resolution on hydrodynamical surface convection simulations and spectral line formation
    Asplund, M
    Ludwig, HG
    Nordlund, Å
    Stein, RF
    ASTRONOMY & ASTROPHYSICS, 2000, 359 (02) : 669 - 681
  • [39] Modeling and numerical simulations of multilane vehicular traffic by active particles methods
    Zagour, M.
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2023, 33 (05) : 1119 - 1146
  • [40] Blob current structures in TORPEX plasmas: experimental measurements and numerical simulations
    Furno, I.
    Theiler, C.
    Lancon, D.
    Fasoli, A.
    Iraji, D.
    Ricci, P.
    Spolaore, M.
    Vianello, N.
    PLASMA PHYSICS AND CONTROLLED FUSION, 2011, 53 (12)