Dedalus: A flexible framework for numerical simulations with spectral methods

被引:288
作者
Burns, Keaton J. [1 ,2 ,3 ]
Vasil, Geoffrey M. [4 ]
Oishi, Jeffrey S. [5 ]
Lecoanet, Daniel [6 ,7 ]
Brown, Benjamin P. [8 ,9 ]
机构
[1] MIT, Dept Math, Cambridge, MA 02139 USA
[2] MIT, Dept Phys, Cambridge, MA 02139 USA
[3] Flatiron Inst, Ctr Computat Astrophys, New York, NY 10010 USA
[4] Univ Sydney, Sch Math & Stat, Sydney, NSW 2006, Australia
[5] Bates Coll, Dept Phys & Astron, Lewiston, ME 04240 USA
[6] Princeton Ctr Theoret Sci, Princeton, NJ 08544 USA
[7] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA
[8] Univ Colorado, Lab Atmospher & Space Phys, Boulder, CO 80309 USA
[9] Univ Colorado, Dept Astrophys & Planetary Sci, Boulder, CO 80309 USA
来源
PHYSICAL REVIEW RESEARCH | 2020年 / 2卷 / 02期
基金
澳大利亚研究理事会;
关键词
MODEL; WAVE; CONVECTION; FLOW; CIRCULATION; INSTABILITY; ATMOSPHERE; TURBULENCE; EQUATIONS; TRANSPORT;
D O I
10.1103/PhysRevResearch.2.023068
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Numerical solutions of partial differential equations enable a broad range of scientific research. The Dedalus project is a flexible, open-source, parallelized computational framework for solving general partial differential equations using spectral methods. Dedalus translates plain-text strings describing partial differential equations into efficient solvers. This paper details the numerical method that enables this translation, describes the design and implementation of the codebase, and illustrates its capabilities with a variety of example problems. The numerical method is a first-order generalized tau formulation that discretizes equations into banded matrices. This method is implemented with an object-oriented design. Classes for spectral bases and domains manage the discretization and automatic parallel distribution of variables. Discretized fields and mathematical operators are symbolically manipulated with a basic computer algebra system. Initial value, boundary value, and eigenvalue problems are efficiently solved using high-performance linear algebra, transform, and parallel communication libraries. Custom analysis outputs can also be specified in plain text and stored in self-describing portable formats. The performance of the code is evaluated with a parallel scaling benchmark and a comparison to a finite-volume code. The features and flexibility of the codebase are illustrated by solving several examples: the nonlinear Schrodinger equation on a graph, a supersonic magnetohydrodynamic vortex, quasigeostrophic flow, Stokes flow in a cylindrical annulus, normal modes of a radiative atmosphere, and diamagnetic levitation.
引用
收藏
页数:39
相关论文
共 141 条
[1]  
Ablowitz M., 2008, Scholarpedia, V3, P5561, DOI DOI 10.4249/SCHOLARPEDIA.5561
[2]   INSTABILITY BY MAGNETIC BUOYANCY [J].
ACHESON, DJ .
SOLAR PHYSICS, 1979, 62 (01) :23-50
[3]   Entropy Rain: Dilution and Compression of Thermals in Stratified Domains [J].
Anders, Evan H. ;
Lecoanet, Daniel ;
Brown, Benjamin P. .
ASTROPHYSICAL JOURNAL, 2019, 884 (01)
[4]   Predicting the Rossby Number in Convective Experiments [J].
Anders, Evan H. ;
Manduca, Cathryn M. ;
Brown, Benjamin P. ;
Oishi, Jeffrey S. ;
Vasil, Geoffrey M. .
ASTROPHYSICAL JOURNAL, 2019, 872 (02)
[5]   Accelerated evolution of convective simulations [J].
Anders, Evan H. ;
Brown, Benjamin P. ;
Oishi, Jeffrey S. .
PHYSICAL REVIEW FLUIDS, 2018, 3 (08)
[6]   Convective heat transport in stratified atmospheres at low and high Mach number [J].
Anders, Evan H. ;
Brown, Benjamin P. .
PHYSICAL REVIEW FLUIDS, 2017, 2 (08)
[7]  
[Anonymous], 1984, Foundations of radiation hydrodynamics
[8]   Implicit-explicit Runge-Kutta methods for time-dependent partial differential equations [J].
Ascher, UM ;
Ruuth, SJ ;
Spiteri, RJ .
APPLIED NUMERICAL MATHEMATICS, 1997, 25 (2-3) :151-167
[9]   On symmetrizing the ultraspherical spectral method for self-adjoint problems [J].
Aurentz, Jared Lee ;
Slevinsky, Richard Mikael .
JOURNAL OF COMPUTATIONAL PHYSICS, 2020, 410
[10]   Turbulence in vertically averaged convection [J].
Balci, N. ;
Isenberg, A. M. ;
Jolly, M. S. .
PHYSICA D-NONLINEAR PHENOMENA, 2018, 376 :216-227