The effect of nitridation temperature on the structural, optical and electrical properties of GaN nanoparticles

被引:24
作者
Gopalakrishnan, M. [1 ]
Purushothaman, V. [1 ]
Ramakrishnan, V. [2 ]
Bhalerao, G. M. [3 ]
Jeganathan, K. [1 ]
机构
[1] Bharathidasan Univ, Sch Phys, Ctr Nanosci & Nanotechnol, Tiruchirappalli 620024, Tamil Nadu, India
[2] Madurai Kamaraj Univ, Sch Phys, Dept Laser Studies, Madurai 625021, Tamil Nadu, India
[3] UGC DAE Consortium Sci Res CSR, Kokilamedu 603104, Tamil Nadu, India
关键词
PLASMON COUPLED MODES; AMMONIATING TEMPERATURE; ELECTRONIC-PROPERTIES; MOBILITY-TRANSISTOR; GALLIUM NITRIDE; GROWTH; RAMAN; BLUE; LUMINESCENCE; PROSPECTS;
D O I
10.1039/c3ce42417k
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Synthesis of GaN nanoparticles (NPs) by a novel chemical co-precipitation method and the effect of nitridation temperature on the structural, optical and electrical properties have been reported. X-ray diffraction and high resolution transmission electron microscopy show the hexagonal wurtzite structure and highly crystalline nature of the GaN NPs. A strong blue luminescence was observed for all the GaN NPs at room temperature photoluminescence studies. Nevertheless, red and yellow luminescence were absent at the nitridation temperature of 1000 degrees C. The phonon frequency mode at the k-point of the Brillouin zone symmetry was observed at 271-273 cm(-1) for GaN NPs by micro-Raman spectroscopy, which is normally absent for bulk GaN. The carrier concentration and mobility of GaN NPs synthesized at higher temperature were calculated to be 1.36 x 10(17) cm(-3) and 433 cm(2) V-1 s(-1), respectively, by the Raman line shape analysis of the longitudinal-optical-phonon-plasmon coupled mode.
引用
收藏
页码:3584 / 3591
页数:8
相关论文
共 40 条
[1]   Powder synthesis and ammonothermal crystal growth of GaN from metallic Ga in the presence of NH4I [J].
Bao, Quanxi ;
Sawayama, Hiromi ;
Hashimoto, Takanori ;
Sato, Fukuma ;
Hazu, Kouji ;
Kagamitani, Yuji ;
Ishinabe, Takayuki ;
Saito, Makoto ;
Kayano, Rinzo ;
Tomida, Daisuke ;
Qiao, Kun ;
Chichibu, Shigefusa F. ;
Yokoyama, Chiaki ;
Ishiguro, Tohru .
CRYSTENGCOMM, 2012, 14 (10) :3351-3354
[2]   Catalytic growth and characterization of gallium nitride nanowires [J].
Chen, CC ;
Yeh, CC ;
Chen, CH ;
Yu, MY ;
Liu, HL ;
Wu, JJ ;
Chen, KH ;
Chen, LC ;
Peng, JY ;
Chen, YF .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2001, 123 (12) :2791-2798
[3]   Phonon dispersion and Raman scattering in hexagonal GaN and AlN [J].
Davydov, VY ;
Kitaev, YE ;
Goncharuk, IN ;
Smirnov, AN ;
Graul, J ;
Semchinova, O ;
Uffmann, D ;
Smirnov, MB ;
Mirgorodsky, AP ;
Evarestov, RA .
PHYSICAL REVIEW B, 1998, 58 (19) :12899-12907
[4]  
Fosal G., 1996, SCIENCE, V272, P1751
[5]   Evidence of free carrier concentration gradient along the c-axis for undoped GaN single crystals [J].
Frayssinet, E ;
Knap, W ;
Krukowski, S ;
Perlin, P ;
Wisniewski, P ;
Suski, T ;
Grzegory, I ;
Porowski, S .
JOURNAL OF CRYSTAL GROWTH, 2001, 230 (3-4) :442-447
[6]   Quantum confinement of excitons in dendrite-like GaN nanowires [J].
Ghosh, R ;
Basak, D .
JOURNAL OF APPLIED PHYSICS, 2005, 98 (08)
[7]   Structural and optical properties of GaN and InGaN nanoparticles by chemical co-precipitation method [J].
Gopalakrishnan, M. ;
Purushothaman, V. ;
Venkatesh, P. Sundara ;
Ramakrishnan, V. ;
Jeganathan, K. .
MATERIALS RESEARCH BULLETIN, 2012, 47 (11) :3323-3329
[8]  
Hayes W., 1978, SCATTERING LIGHT CRY
[9]  
HEATH JR, 1999, ACCOUNTS CHEM RES, P32
[10]  
Hochi S., 2007, OKI TECHNICAL REV, V74, P90