Crystallization of a fungal lytic polysaccharide monooxygenase expressed from glycoengineered Pichia pastoris for X-ray and neutron diffraction

被引:21
作者
O'Dell, William B. [1 ,2 ]
Swartz, Paul D. [1 ]
Weiss, Kevin L. [2 ]
Meilleur, Flora [1 ,2 ]
机构
[1] North Carolina State Univ, Dept Mol & Struct Biochem, Campus Box 7622, Raleigh, NC 27695 USA
[2] Oak Ridge Natl Lab, Biol & Soft Matter Div, POB 2008, Oak Ridge, TN 37831 USA
来源
ACTA CRYSTALLOGRAPHICA SECTION F-STRUCTURAL BIOLOGY COMMUNICATIONS | 2017年 / 73卷
基金
美国国家科学基金会;
关键词
lytic polysaccharide monooxygenases; Pichia pastoris; glycoengineering; neutron proteincrystallography; PROTEIN-STRUCTURE; STRUCTURE REFINEMENT; RECOMBINANT PROTEIN; DEGRADATION; CELLULOSE; INSIGHTS;
D O I
10.1107/S2053230X16020318
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Lytic polysaccharide monooxygenases (LPMOs) are carbohydrate-disrupting enzymes secreted by bacteria and fungi that break glycosidic bonds via an oxidative mechanism. Fungal LPMOs typically act on cellulose and can enhance the efficiency of cellulose-hydrolyzing enzymes that release soluble sugars for bioethanol production or other industrial uses. The enzyme PMO-2 from Neurospora crassa (NcPMO-2) was heterologously expressed in Pichia pastoris to facilitate crystallographic studies of the fungal LPMO mechanism. Diffraction resolution and crystal morphology were improved by expressing NcPMO-2 from a glycoengineered strain of P. pastoris and by the use of crystal seeding methods, respectively. These improvements resulted in high-resolution (1.20 angstrom) X-ray diffraction data collection at 100 K and the production of a large NcPMO-2 crystal suitable for room-temperature neutron diffraction data collection to 2.12 angstrom resolution.
引用
收藏
页码:70 / 78
页数:9
相关论文
共 39 条
  • [21] Structural Basis for Substrate Targeting and Catalysis by Fungal Polysaccharide Monooxygenases
    Li, Xin
    Beeson, William T.
    Phillips, Christopher M.
    Marletta, Michael A.
    Cate, Jamie H. D.
    [J]. STRUCTURE, 2012, 20 (06) : 1051 - 1061
  • [22] Mattanovich D, 2012, METHODS MOL BIOL, V824, P329, DOI 10.1007/978-1-61779-433-9_17
  • [23] Phaser crystallographic software
    McCoy, Airlie J.
    Grosse-Kunstleve, Ralf W.
    Adams, Paul D.
    Winn, Martyn D.
    Storoni, Laurent C.
    Read, Randy J.
    [J]. JOURNAL OF APPLIED CRYSTALLOGRAPHY, 2007, 40 : 658 - 674
  • [24] The IMAGINE instrument: first neutron protein structure and new capabilities for neutron macromolecular crystallography
    Meilleur, Flora
    Munshi, Parthapratim
    Robertson, Lee
    Stoica, Alexandru D.
    Crow, Lowell
    Kovalevsky, Andrey
    Koritsanszky, Tibor
    Chakoumakos, Bryan C.
    Blessing, Robert
    Myles, Dean A. A.
    [J]. ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY, 2013, 69 : 2157 - 2160
  • [25] Expression of deuterium-isotope-labelled protein in the yeast Pichia pastoris for NMR studies
    Morgan, WD
    Kragt, A
    Feeney, J
    [J]. JOURNAL OF BIOMOLECULAR NMR, 2000, 17 (04) : 337 - 347
  • [26] O'Dell W. B., 2016, ANGEW CHEM INT ED
  • [27] Neutron protein crystallography: A complementary tool for locating hydrogens in proteins
    O'Dell, William B.
    Bodenheimer, Annette M.
    Meilleur, Flora
    [J]. ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, 2016, 602 : 48 - 60
  • [28] Optimal description of a protein structure in terms of multiple groups undergoing TLS motion
    Painter, J
    Merritt, EA
    [J]. ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY, 2006, 62 : 439 - 450
  • [29] TLSMD web server for the generation of multi-group TLS models
    Painter, J
    Merritt, EA
    [J]. JOURNAL OF APPLIED CRYSTALLOGRAPHY, 2006, 39 : 109 - 111
  • [30] Pickford Andrew R, 2004, Methods Mol Biol, V278, P17