Generalized diagonal crossed products and smash products for quasi-Hopf algebras. Applications

被引:30
作者
Bulacu, Daniel
Panaite, Florin
Van Oystaeyen, Freddy
机构
[1] Univ Bucharest, Fac Math & Informat, RO-70109 Bucharest 1, Romania
[2] Romanian Acad, Inst Math, RO-014700 Bucharest, Romania
[3] Univ Antwerp, Dept Math & Comp Sci, B-2020 Antwerp, Belgium
关键词
D O I
10.1007/s00220-006-0051-z
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper we introduce generalizations of diagonal crossed products, two-sided crossed products and two-sided smash products, for a quasi-Hopf algebra H. The results we obtain may then be applied to H*-Hopf bimodules and generalized Yetter-Drinfeld modules. The generality of our situation entails that the "generating matrix" formalism cannot be used, forcing us to use a different approach. This pays off because as an application we obtain an easy conceptual proof of an important but very technical result of Hausser and Nill concerning iterated two-sided crossed products.
引用
收藏
页码:355 / 399
页数:45
相关论文
共 26 条
[1]   Braided cyclic cocycles and nonassociative geometry [J].
Akrami, SE ;
Majid, S .
JOURNAL OF MATHEMATICAL PHYSICS, 2004, 45 (10) :3883-3911
[2]   Quasialgebra structure of the octonions [J].
Albuquerque, H ;
Majid, S .
JOURNAL OF ALGEBRA, 1999, 220 (01) :188-224
[3]   QUASI-QUANTUM GROUPS, KNOTS, 3-MANIFOLDS, AND TOPOLOGICAL FIELD-THEORY [J].
ALTSCHULER, D ;
COSTE, A .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1992, 150 (01) :83-107
[4]  
BEGGS EJ, 2005, QUANTIZATION COCHAIN
[5]   Relative Hopf modules for (dual) quasi-Hopf algebras [J].
Bulacu, D ;
Nauwelaerts, E .
JOURNAL OF ALGEBRA, 2000, 229 (02) :632-659
[6]   Two-sided two-cosided Hopf modules and Doi-Hopf modules for quasi-Hopf algebras [J].
Bulacu, D ;
Caenepeel, S .
JOURNAL OF ALGEBRA, 2003, 270 (01) :55-95
[7]   Quasi-Hopf algebra actions and smash products [J].
Bulacu, D ;
Panaite, F ;
Van Oystaeyen, F .
COMMUNICATIONS IN ALGEBRA, 2000, 28 (02) :631-651
[8]   Crossed modules and Doi-Hopf modules [J].
Caenepeel, S ;
Militaru, G ;
Zhu, SL .
ISRAEL JOURNAL OF MATHEMATICS, 1997, 100 (1) :221-247
[9]   Noncommutative finite-dimensional manifolds. I. Spherical manifolds and related examples [J].
Connes, A ;
Dubois-Violette, M .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2002, 230 (03) :539-579
[10]  
Dijkgraaf R., 1990, NUCL PHYS B S, V18B, P60, DOI DOI 10.1016/0920-5632(91)90123-V