Riemann-Roch for homotopy invariant K-theory and Gysin morphisms

被引:6
作者
Navarro, A. [1 ]
机构
[1] Inst Ciencias Matemat, CSIC UAM UCM UC3M, Madrid, Spain
关键词
Riemann-Roch; K-theory; Motivic cohomology; Motives; A(1)-HOMOTOPY; COHOMOLOGY;
D O I
10.1016/j.aim.2018.01.001
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove the Riemann-Roth theorem for homotopy invariant K-theory and projective local complete intersection morphisms between finite dimensional noetherian schemes, without smoothness assumptions. We also prove a new Riemann-Roch theorem for the relative cohomology of a morphism. In order to do so, we construct and characterize new Gysin morphisms for regular immersions between cohomologies represented by spectra (examples include homotopy invariant K-theory, motivic cohomology, their arithmetic counterparts, real absolute Hodge and Deligne-Beilinson cohomology, rigid syntomic cohomology, mixed Weil cohomologies) and we use this construction to prove a motivic version of the Riemann-Roch. (C) 2018 Published by Elsevier Inc.
引用
收藏
页码:501 / 554
页数:54
相关论文
共 43 条
[1]  
Adams JF., 1974, Stable Homotopy and Generalised Homology
[2]  
Ayoub J., 2007, 6 OPERATIONS GROTHEN, P314
[3]  
Baum P., 1975, Publ. Math. IHES, V45, P101
[4]  
Beilinson A.A., 1986, CONT MATH
[5]  
Beilinson AA., 1985, J. Soviet Math., V30, P2036, DOI 10.1007/BF02105861
[6]  
Berthelot P., 1971, Theorie des intersections et theoreme de Riemann-Roch, SGA, V225
[7]  
Borel A., 1958, Bull. Soc. Math. France, V86, P97
[8]  
BURGOS JI, 1994, COMPOS MATH, V92, P61
[9]   Higher Bott-Chern forms and Beilinson's regulator [J].
Burgos, JI ;
Wang, S .
INVENTIONES MATHEMATICAE, 1998, 132 (02) :261-305
[10]  
Burgos JI, 1997, J ALGEBRAIC GEOM, V6, P335