Cities and the structure of social interactions: Evidence from mobile phone data

被引:25
作者
Buchel, Konstantin [1 ,2 ]
v Ehrlich, Maximilian [1 ,2 ]
机构
[1] Univ Bern, Dept Econ, Schanzeneckstr 1, CH-3001 Bern, Switzerland
[2] Ctr Reg Econ Dev, Schanzeneckstr 1, CH-3001 Bern, Switzerland
关键词
Social interactions; Mobile phones; Face-to-Face interactions; Cities; Spatial sorting; COMMUNICATION; INFORMATION; NETWORKS;
D O I
10.1016/j.jue.2020.103276
中图分类号
F [经济];
学科分类号
02 ;
摘要
The impact of telecommunication technologies on the role of cities depends on whether these technologies and face-to-face interactions are substitutes or complements. We analyze anonymized mobile phone data to examine how distance and population density affect calling behavior. Exploiting an exogenous change in travel times as well as permanent relocations of individuals, we find that distance is highly detrimental to link formation. Mobile phone usage significantly increases with population density even when spatial sorting is accounted for. This effect is most pronounced for local interactions between individuals in the same catchment area. This indicates that face-to-face interactions and mobile phone calls are complementary to each other, so that mobile phone technology may even increase the dividends of density.
引用
收藏
页数:21
相关论文
共 50 条
[41]   Fine-grained crowd distribution forecasting with multi-order spatial interactions using mobile phone data [J].
Li, Mingxiao ;
Gao, Song ;
Qiu, Peiyuan ;
Tu, Wei ;
Lu, Feng ;
Zhao, Tianhong ;
Li, Qingquan .
TRANSPORTATION RESEARCH PART C-EMERGING TECHNOLOGIES, 2022, 144
[42]   Speed prediction from mobile sensors using cellular phone-based traffic data [J].
Basyoni, Yarah ;
Abbas, Hazem M. ;
Talaat, Hoda ;
El Dimeery, Ibrahim .
IET INTELLIGENT TRANSPORT SYSTEMS, 2017, 11 (07) :387-396
[43]   Mobile Sensor Data Collecting System Based on Smart Phone [J].
Zhen, Chen ;
Qiang, Gao .
PERVASIVE COMPUTING AND THE NETWORKED WORLD, 2014, 8351 :8-+
[44]   Improving student learning via mobile phone video content: Evidence from the BridgeIT India project [J].
Wennersten, Matthew ;
Quraishy, Zubeeda Banu ;
Velamuri, Malathi .
INTERNATIONAL REVIEW OF EDUCATION, 2015, 61 (04) :503-528
[45]   Inferring social structure from temporal data [J].
Psorakis, Ioannis ;
Voelkl, Bernhard ;
Garroway, Colin J. ;
Radersma, Reinder ;
Aplin, Lucy M. ;
Crates, Ross A. ;
Culina, Antica ;
Farine, Damien R. ;
Firth, Josh A. ;
Hinde, Camilla A. ;
Kidd, Lindall R. ;
Milligan, Nicole D. ;
Roberts, Stephen J. ;
Verhelst, Brecht ;
Sheldon, Ben C. .
BEHAVIORAL ECOLOGY AND SOCIOBIOLOGY, 2015, 69 (05) :857-866
[46]   Understanding the Spatial Structure of Urban Commuting Using Mobile Phone Location Data: A Case Study of Shenzhen, China [J].
Yang, Xiping ;
Fang, Zhixiang ;
Yin, Ling ;
Li, Junyi ;
Zhou, Yang ;
Lu, Shiwei .
SUSTAINABILITY, 2018, 10 (05)
[47]   Assessing the use of mobile phone data to describe recurrent mobility patterns in spatial epidemic models [J].
Panigutti, Cecilia ;
Tizzoni, Michele ;
Bajardi, Paolo ;
Smoreda, Zbigniew ;
Colizza, Vittoria .
ROYAL SOCIETY OPEN SCIENCE, 2017, 4 (05)
[48]   Mobile phones, digital inequality, and fertility: Longitudinal evidence from Malawi [J].
Billari, Francesco C. ;
Rotondi, Valentina ;
Trinitapoli, Jenny .
DEMOGRAPHIC RESEARCH, 2020, 42 :1057-1096
[49]   Mobile phone communication in social support networks of older adults in Slovenia [J].
Petrovcic, Andraz ;
Fortunati, Leopoldina ;
Vehovar, Vasja ;
Kavcic, Matic ;
Dolnicar, Vesna .
TELEMATICS AND INFORMATICS, 2015, 32 (04) :642-655
[50]   Social interactions in asset allocation decisions: Evidence from 401(k) pension plan investors [J].
Lu, Timothy ;
Tang, Ning .
JOURNAL OF ECONOMIC BEHAVIOR & ORGANIZATION, 2019, 159 :1-14