CAR-NK cells;
CRISPR/Cas9;
DNA transposon;
Genome editing;
ACUTE MYELOID-LEUKEMIA;
T-CELLS;
NK CELLS;
TRANSPLANTATION;
CHEMOTHERAPY;
SURVIVAL;
CISH;
D O I:
10.1016/j.jcyt.2022.07.008
中图分类号:
Q813 [细胞工程];
学科分类号:
摘要:
Background: Natural killer (NK) cell genome editing promises to enhance the innate and alloreactive antitumor potential of NK cell adoptive transfer. DNA transposons are versatile non-viral gene vectors now being adapted to primary NK cells, representing important tools for research and clinical product development. Aims and Methods: We set out to generate donor-derived, primary chimeric antigen receptor (CAR)-NK cells by combining the TcBuster transposon system with Epstein-Barr virus-transformed lymphoblastoid feeder cell-mediated activation and expansion. Results: This approach allowed for clinically relevant NK-cell expansion capability and CAR expression, which was further enhanced by immunomagnetic selection based on binding to the CAR target protein.The resulting CAR-NK cells targeting the myeloid associated antigen CLL-1 efficiently targeted CLL-1-positive AML cell lines and primary AML populations, including a population enriched for leukemia stem cells. Subsequently, concurrent delivery of CRISPR/Cas9 cargo was applied to knockout the NK cell cytokine checkpoint cytokine-inducible SH2-containing protein (CIS, product of the CISH gene), resulting in enhanced cytotoxicity and an altered NK cell phenotype. Conclusions: This report contributes a promising application of transposon engineering to donor-derived NK cells and emphasizes the importance of feeder mediated NK cell activation and expansion to current protocols. (c) 2022 International Society for Cell & Gene Therapy. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)