A New Family of APN Quadrinomials

被引:22
作者
Budaghyan, Lilya [1 ]
Helleseth, Tor [1 ]
Kaleyski, Nikolay [1 ]
机构
[1] Univ Bergen, Dept Informat, N-5020 Bergen, Norway
关键词
Boolean functions; almost perfect nonlinear (APN); differential uniformity; TRINOMIALS;
D O I
10.1109/TIT.2020.3007513
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The binomial B(x) = x(3)+beta x(36) (where beta is primitive in F(2)2) over F(2)10 is the first known example of an Almost Perfect Nonlinear (APN) function that is not CCZ-equivalent to a power function, and has remained unclassified into any infinite family of APN functions since its discovery in 2006. We generalize this binomial to an infinite family of APN quadrinomials of the form x(3) + a(x(2i+ 1))(2k) +bx(3 center dot 2m) +c(x(2i+m+2m))(2k) from which B(x) can be obtained by setting a = beta, b = c = 0, i = 3, k = 2. We show that for any dimension n = 2m with m odd and 3 inverted iota m, setting (a, b, c) = (beta, beta(2), 1) and i = m - 2 or i = (m - 2)(-1) mod n yields an APN function, and verify that for n = 10 the quadrinomials obtained in this way for i = m - 2 and i = (m - 2)(-1) mod n are CCZ-inequivalent to each other, to B(x), and to any other known APN function over F(2)10.
引用
收藏
页码:7081 / 7087
页数:7
相关论文
共 25 条
[1]   ON SOLUTION OF ALGEBRAIC EQUATIONS OVER FINITE FIELDS [J].
BERLEKAM.ER ;
RUMSEY, H ;
SOLOMON, G .
INFORMATION AND CONTROL, 1967, 10 (06) :553-&
[2]  
Beth T., 1994, LECT NOTES COMPUTER, V765
[3]  
BIHAM E, 1991, LECT NOTES COMPUT SC, V537, P2
[4]   New families of quadratic almost perfect nonlinear trinomials and multinomials [J].
Bracken, Carl ;
Byrne, Eimear ;
Markin, Nadya ;
McGuire, Gary .
FINITE FIELDS AND THEIR APPLICATIONS, 2008, 14 (03) :703-714
[5]   A few more quadratic APN functions [J].
Bracken, Carl ;
Byrne, Eimear ;
Markin, Nadya ;
McGuire, Gary .
CRYPTOGRAPHY AND COMMUNICATIONS-DISCRETE-STRUCTURES BOOLEAN FUNCTIONS AND SEQUENCES, 2011, 3 (01) :43-53
[6]  
Browning K., 2009, J COMBINATORICS INF, V34, P135
[7]   Two classes of quadratic APN binomials inequivalent to power functions [J].
Budaghyan, Lilya ;
Carlet, Claude ;
Leander, Gregor .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2008, 54 (09) :4218-4229
[8]  
Budaghyan L, 2008, IEEE T INFORM THEORY, V54, P2354, DOI 10.1109/TIT.2008.920246
[9]   Constructing APN Functions Through Isotopic Shifts [J].
Budaghyan, Lilya ;
Calderini, Marco ;
Carlet, Claude ;
Coulter, Robert S. ;
Villa, Irene .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2020, 66 (08) :5299-5309
[10]  
Budaghyan L, 2009, 2009 IEEE INFORMATION THEORY WORKSHOP (ITW 2009), P374, DOI 10.1109/ITW.2009.5351383