JORDAN *-DERIVATIONS OF PRIME RINGS

被引:23
作者
Lee, Tsiu-Kwen [1 ]
Zhou, Yiqiang [2 ]
机构
[1] Natl Taiwan Univ, Dept Math, Taipei 106, Taiwan
[2] Mem Univ Newfoundland, Dept Math & Stat, St John, NF A1C 5S7, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Prime ring; involution; Jordan *-derivation; PI; maximal symmetric ring of quotients; functional identity; QUADRATIC FUNCTIONALS; INVOLUTION; ALGEBRAS;
D O I
10.1142/S0219498813501260
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let R be a prime ring, which is not commutative, with involution * and with Q(ms)(R) the maximal symmetric ring of quotients of R. An additive map delta : R -> R is called a Jordan *-derivation if delta(x(2)) = delta(x)x* + x delta(x) for all x is an element of R. A Jordan *-derivation of R is called X-inner if it is of the form x bar right arrow xa - ax* for x is an element of R, where a is an element of Q(ms)(R). We prove that any Jordan *-derivation of R is X-inner if char R not equal 2 or deg(S(R)) > 4, where S(R) := {x is an element of R| x* = x}.
引用
收藏
页数:9
相关论文
共 19 条
[1]   RINGS WITH INVOLUTION [J].
AMITSUR, SA .
ISRAEL JOURNAL OF MATHEMATICS, 1968, 6 (02) :99-&
[2]  
Beidar K. I., 1996, MONOGRAPHS TXB PURE, V196
[3]   On functional identities in prime rings with involution [J].
Beidar, KI ;
Martindale, WS .
JOURNAL OF ALGEBRA, 1998, 203 (02) :491-532
[4]  
Bresar M, 1989, AEQUATIONES MATH, V38, P178, DOI DOI 10.1007/BF01840003
[5]  
Bresar M., 1992, Colloq. Math., V63, P163, DOI 10.4064/cm-63-2-163-171
[6]   Jordan τ-Derivations of Locally Matrix Rings [J].
Chuang, Chen-Lian ;
Fosner, Ajda ;
Lee, Tsiu-Kwen .
ALGEBRAS AND REPRESENTATION THEORY, 2013, 16 (03) :755-763
[7]   Jordan *-Derivations of Finite-Dimensional Semiprime Algebras [J].
Fosner, Ajda ;
Lee, Tsiu-Kwen .
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2014, 57 (01) :51-60
[8]  
Herstein I. N., 1969, Topics in Ring Theory
[9]  
Jacobson N., 1975, Lecture Notes in Mathematics, V441
[10]  
Kurepa S., 1965, GLAS MAT, V20, P79