Solution of a multiple Nevanlinna-Pick problem via orthogonal rational functions

被引:8
作者
Langer, H [1 ]
Lasarow, A [1 ]
机构
[1] Vienna Tech Univ, Inst Anal & Sci Comp, A-1040 Vienna, Austria
关键词
Nevanlinna-Pick interpolation problem; Caratheodory functions; orthogonal rational functions; Schur-Nevardinna algorithm; Szegb parameters; Schur parameters;
D O I
10.1016/j.jmaa.2004.01.022
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a Nevanlinna-Pick type interpolation problem for Caratheodory functions, where the values of the function and its derivatives up to certain orders are given at finitely many points of the unit disk. The set of all solutions of this problem is described by means of the orthogonal rational functions which play here a similar role as the orthogonal polynomials on the unit circle in the classical case of the trigonometric moment problem. In particular, we use a connection between Szego and Schur parameters which in the classical situation was discovered by Ja.L. Geronimus. (C) 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:605 / 632
页数:28
相关论文
共 26 条
[1]  
Akhiezer N. I., 1965, LECT APPROXIMATION T
[2]  
[Anonymous], DOKLADY AKAD NAUK SS
[3]  
Ball J.A., 1990, Interpolation of Rational Matrix Functions
[4]  
Bultheel A., 1999, CAMBRIDGE MONOGRAPHS, V5
[5]   The variability range of the coefficients of the power series, which do not reach a given value [J].
Caratheodory, C .
MATHEMATISCHE ANNALEN, 1907, 64 :95-115
[6]  
CHANG C, 1994, ALGEBRA APPL, V203, P209
[7]   On the multiple Nevanlinna-Pick matrix interpolation in the class Cp and the Caratheodory matrix coefficient problem [J].
Chen, GN ;
Hu, YJ .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1998, 283 (1-3) :179-203
[8]   SCHUR PARAMETRIZATION OF POSITIVE DEFINITE BLOCK-TOEPLITZ SYSTEMS [J].
DELSARTE, P ;
GENIN, Y ;
KAMP, Y .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1979, 36 (01) :34-46
[9]  
DUBOVOJ VK, 1992, TEUBNER TEXTE MATH, V129
[10]  
DYM H, 1989, CBMS REG C MATH, V71