Nonexponential decay laws in perturbation theory of near threshold eigenvalues

被引:10
作者
Dinu, Victor [1 ]
Jensen, Arne [2 ]
Nenciu, Gheorghe [1 ,3 ]
机构
[1] Univ Bucharest, CAQP, Fac Phys, RO-077125 Bucharest, Romania
[2] Aalborg Univ, Dept Math Sci, DK-9220 Aalborg O, Denmark
[3] Romanian Acad, Inst Math, RO-014700 Bucharest, Romania
关键词
FERMI GOLDEN-RULE; SCHRODINGER-OPERATORS; RESOLVENT EXPANSIONS; SPECTRAL PROPERTIES; RESONANCE THEORY; TIME-DECAY; STATES;
D O I
10.1063/1.3046562
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider a two channel model of the form H-epsilon=[0 H-op E-0 0] +epsilon[W-12 0 0 W-21] on H = H-op circle plus C. The operator H-op is assumed to have the properties of a Schrodinger operator in odd dimensions, with a threshold at zero. As the energy parameter E0 is tuned past the threshold, we consider the survival probability vertical bar <Psi(0), e(-itH epsilon)Psi(0)>vertical bar(2), where Psi(0) is the eigenfunction corresponding to eigenvalue E-0 for epsilon=0. We find nonexponential decay laws for epsilon small and E-0 close to zero provided that the resolvent of Hop is not at least Lipschitz continuous at the threshold zero. (C) 2009 American Institute of Physics. [DOI: 10.1063/1.3046562]
引用
收藏
页数:20
相关论文
共 30 条
[1]   A general resonance theory based on Mourre's inequality [J].
Cattaneo, L ;
Graf, GM ;
Hunziker, W .
ANNALES HENRI POINCARE, 2006, 7 (03) :583-601
[2]   TIME EVOLUTION OF UNSTABLE QUANTUM STATES AND A RESOLUTION OF ZENOS PARADOX [J].
CHIU, CB ;
SUDARSHAN, ECG ;
MISRA, B .
PHYSICAL REVIEW D, 1977, 16 (02) :520-529
[3]   Resonance theory for Schrodinger operators [J].
Costin, O ;
Soffer, A .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2001, 224 (01) :133-152
[4]   RESONANCES, SPECTRAL CONCENTRATION AND EXPONENTIAL DECAY [J].
DAVIES, EB .
LETTERS IN MATHEMATICAL PHYSICS, 1975, 1 (01) :31-35
[5]   POLE APPROXIMATION AND SPECTRAL CONCENTRATION [J].
DEMUTH, M .
MATHEMATISCHE NACHRICHTEN, 1976, 73 :65-72
[6]  
Exner P., 1985, OPEN QUANTUM SYSTEMS
[7]   DECAY THEORY OF UNSTABLE QUANTUM SYSTEMS [J].
FONDA, L ;
GHIRARDI, GC ;
RIMINI, A .
REPORTS ON PROGRESS IN PHYSICS, 1978, 41 (04) :587-631
[8]  
Gradshteyn I., 2013, Tables of Integrals, Series and Products
[9]   RADIOACTIVITY - SEEKING NON-EXPONENTIAL DECAY [J].
GREENLAND, PT .
NATURE, 1988, 335 (6188) :298-298
[10]   RESONANCES, METASTABLE STATES AND EXPONENTIAL DECAY LAWS IN PERTURBATION-THEORY [J].
HUNZIKER, W .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1990, 132 (01) :177-188