Composition functionals in higher order calculus of variations and Noether's theorem

被引:3
作者
Frederico, Gastao S. F. [1 ]
Sousa, J. Vanterler da C. [2 ]
Almeida, Ricardo [3 ]
机构
[1] Univ Fed Ceara, Dept Math, Campus Russas, Russas, Brazil
[2] Univ Estadual Campinas, Dept Appl Math, Imecc, Campinas, SP, Brazil
[3] Univ Aveiro, Ctr Res & Dev Math & Applicat CIDMA, Dept Math, Aveiro, Portugal
关键词
Higher-order Noether's theorem; existence and uniqueness; DuBois-Reymond conditions; Euler-Lagrange equations; EULER-LAGRANGE EQUATION; DERIVATIVES; REGULARITY;
D O I
10.1080/00036811.2021.1921159
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the present paper, we discuss the existence and uniqueness of solution for higher-order calculus of variations problems, involving composition of functionals. Also, higher-order DuBois-Reymond conditions in the Sobolev space W-m,W-p([t(1), t(2)]; R) are proven, both in integral and differential form, and under additional constraints. We consider the higher-order Noether's theorem and discuss invariance conditions for the main problem.
引用
收藏
页码:6321 / 6338
页数:18
相关论文
共 36 条