Reference priors for exponential families

被引:12
作者
Gutiérrez-Peña, E [1 ]
Rueda, R [1 ]
机构
[1] Univ Nacl Autonoma Mexico, IIMAS, Dept Probabilidad & Estadist, Mexico City 01000, DF, Mexico
关键词
affine dual foliations; Bayesian inference; cut; natural exponential family; quadratic variance function; reference prior;
D O I
10.1016/S0378-3758(01)00281-6
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Reference analysis, introduced by Bernardo (J. Roy. Statist. Soc. 41 (1979) 113) and further developed by Berger and Bernardo (On the development of reference priors (with discussion). In: J.M. Bernardo, J.O. Berger, A.P. Dawid, A.F.M. Smith (Eds.), Bayesian Statistics, Vol. 4, Clarendon Press, Oxford, pp. 35-60), has proved to be one of the most successful general methods to derive noninformative prior distributions. In practice, however, reference priors are typically difficult to obtain. In this paper we show how to find reference priors for a wide class of exponential family likelihoods. (C) 2001 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:35 / 54
页数:20
相关论文
共 50 条
[31]   Multivariate stable exponential families and Tweedie scale [J].
Hassairi, A. ;
Louati, M. .
JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2009, 139 (02) :143-158
[32]   Characterization of the simple cubic multivariate exponential families [J].
Hassairi, A ;
Zarai, M .
JOURNAL OF FUNCTIONAL ANALYSIS, 2006, 235 (01) :69-89
[33]   On conjugate families and Jeffreys priors for von Mises-Fisher distributions [J].
Hornik, Kurt ;
Gruen, Bettina .
JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2013, 143 (05) :992-999
[34]   POSTERIOR PROPRIETY IN BAYESIAN EXTREME VALUE ANALYSES USING REFERENCE PRIORS [J].
Northrop, Paul J. ;
Attalides, Nicolas .
STATISTICA SINICA, 2016, 26 (02) :721-743
[35]   SAMPLING MODELS WHICH ADMIT A GIVEN GENERAL EXPONENTIAL FAMILY AS A CONJUGATE FAMILY OF PRIORS [J].
BARLEV, SK ;
ENIS, P ;
LETAC, G .
ANNALS OF STATISTICS, 1994, 22 (03) :1555-1586
[36]   INCREASING HAZARD RATE OF MIXTURES FOR NATURAL EXPONENTIAL FAMILIES [J].
Bar-Lev, Shaul K. ;
Letac, Gerard .
ADVANCES IN APPLIED PROBABILITY, 2012, 44 (02) :373-390
[37]   A note on the discretization of natural exponential families on the real line [J].
Bar-Lev, Shaul K. ;
Letac, Gerard .
METRIKA, 2023, 86 (01) :83-90
[38]   NATURAL EXPONENTIAL-FAMILIES AND SELF-DECOMPOSABILITY [J].
BARLEV, SK ;
BSHOUTY, D ;
LETAC, G .
STATISTICS & PROBABILITY LETTERS, 1992, 13 (02) :147-152
[39]   On confidence bounds for one-parameter exponential families [J].
Alizadeh, M. ;
Nadarajah, S. ;
Doostparast, M. ;
Parchami, A. ;
Mashinchi, M. .
COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2017, 46 (02) :1569-1582
[40]   A note on the discretization of natural exponential families on the real line [J].
Shaul K. Bar-Lev ;
Gérard Letac .
Metrika, 2023, 86 :83-90