Computations in non-commutative Iwasawa theory

被引:38
作者
Dokchitser, T.
Dokchitser, V.
机构
[1] Univ Cambridge, Ctr Math Sci, Dept Pure Math & Math Stat, Cambridge CB33 0WB, England
[2] Tata Inst Fundamental Res, Bombay 400005, Maharashtra, India
关键词
D O I
10.1112/plms/pdl014
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study special values of L-functions of elliptic curves over Q twisted by Artin representations that factor through a false Tate curve extension Q(mu(p)infinity, (p infinity)root m)/Q. In this setting, we explain how to compute L-functions and the corresponding Iwasawa-theoretic invariants of non-abelian twists of elliptic curves. Our results provide both theoretical and computational evidence for the main conjecture of non-commutative lwasawa theory.
引用
收藏
页码:211 / 272
页数:62
相关论文
共 38 条
[1]   Characteristic elements for p-torsion Iwasawa modules [J].
Ardakov, K ;
Wadsley, S .
JOURNAL OF ALGEBRAIC GEOMETRY, 2006, 15 (02) :339-377
[2]   The Magma algebra system .1. The user language [J].
Bosma, W ;
Cannon, J ;
Playoust, C .
JOURNAL OF SYMBOLIC COMPUTATION, 1997, 24 (3-4) :235-265
[3]   On the modularity of elliptic curves over Q: Wild 3-adic exercises [J].
Breuil, C ;
Conrad, B ;
Diamond, F ;
Taylor, R .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2001, 14 (04) :843-939
[4]   Euler characteristics and elliptic curves II [J].
Coates, J ;
Howson, S .
JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2001, 53 (01) :175-235
[5]  
Coates J., 2003, DOC MATH, P187
[6]  
COATES J, 2005, PUBL MATH I HAUTES E, V101, P163
[7]  
Deligne P., 1979, Proc. Sympos. Pure Math., V33, P313
[8]   Computing special values of motivic L-functions [J].
Dokchitser, T .
EXPERIMENTAL MATHEMATICS, 2004, 13 (02) :137-149
[9]   Root numbers of non-Abelian twists of elliptic curves [J].
Dokchitser, V .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2005, 91 :300-324
[10]   Descent calculations for the elliptic curves of conductor 11 [J].
Fisher, T .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2003, 86 :583-606