Graph models for waves in thin structures

被引:225
作者
Kuchment, P [1 ]
机构
[1] Texas A&M Univ, Dept Math, College Stn, TX 77843 USA
来源
WAVES IN RANDOM MEDIA | 2002年 / 12卷 / 04期
基金
美国国家科学基金会;
关键词
D O I
10.1088/0959-7174/12/4/201
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A brief survey on graph models for wave propagation in thin structures is presented. Such models arise in many areas of mathematics, physics, chemistry and engineering (dynamical systems, nanotechnology, mesoscopic systems, photonic crystals etc). Considerations are limited to spectral problems, although references to works with other studies are provided.
引用
收藏
页码:R1 / R24
页数:24
相关论文
共 184 条
[1]  
ADAMYAN VM, 1992, OPER THEORY ADV APPL, V59, P1, DOI DOI 10.1007/978-3-0348-8606-2_1
[2]   Spectral determinant on quantum graphs [J].
Akkermans, E ;
Comtet, A ;
Desbois, J ;
Montambaux, G ;
Texier, C .
ANNALS OF PHYSICS, 2000, 284 (01) :10-51
[3]  
AKKERMANS E, 1995, HOUCHES SUMM SCH P, V61
[4]  
Albeverio S., 1988, Solvable Models in Quantum Mechanics
[5]   SUPERCONDUCTIVITY OF NETWORKS - A PERCOLATION APPROACH TO THE EFFECTS OF DISORDER [J].
ALEXANDER, S .
PHYSICAL REVIEW B, 1983, 27 (03) :1541-1557
[6]  
[Anonymous], ELECT J DIFFER EQU
[7]  
[Anonymous], MESOSCOPIC SYSTEMS
[8]  
[Anonymous], 2000, Solvable Schrodinger type operators
[9]  
[Anonymous], 1998, SEM THEOR SPECTR GEO
[10]  
[Anonymous], 1996, LECT MATH ETH ZURICH