Fast, closed-form, and efficient estimators for hierarchical models with AR(1) covariance and unequal cluster sizes

被引:5
作者
Hermans, Lisa [1 ]
Nassiri, Vahid [2 ]
Molenberghs, Geert [1 ,2 ]
Kenward, Michael G.
Van der Elst, Wim [1 ,3 ]
Aerts, Marc [1 ]
Verbeke, Geert [1 ,2 ]
机构
[1] Univ Hasselt, I BioStat, B-3590 Diepenbeek, Belgium
[2] Katholieke Univ Leuven, I BioStat, Leuven, Belgium
[3] Janssen Pharmaceut, Beerse, Belgium
关键词
Maximum likelihood; Pseudo-likelihood; Unequal cluster size; GROUP SEQUENTIAL TEST; TRIALS;
D O I
10.1080/03610918.2017.1316395
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This article is concerned with statistically and computationally efficient estimation in a hierarchical data setting with unequal cluster sizes and an AR(1) covariance structure. Maximum likelihood estimation for AR(1) requires numerical iteration when cluster sizes are unequal. A near optimal non-iterative procedure is proposed. Pseudo-likelihood and split-sample methods are used, resulting in computing weights to combine cluster size specific parameter estimates. Results show that the method is statistically nearly as efficient as maximum likelihood, but shows great savings in computation time.
引用
收藏
页码:1492 / 1505
页数:14
相关论文
共 28 条
  • [21] Milanzi E., 2016, J BIOMETRICS BIOSTAT, V7, P272
  • [22] Estimation After a Group Sequential Trial
    Milanzi E.
    Molenberghs G.
    Alonso A.
    Kenward M.G.
    Tsiatis A.A.
    Davidian M.
    Verbeke G.
    [J]. Statistics in Biosciences, 2015, 7 (2) : 187 - 205
  • [23] On random sample size, ignorability, ancillarity, completeness, separability, and degeneracy: Sequential trials, random sample sizes, and missing data
    Molenberghs, Geert
    Kenward, Michael G.
    Aerts, Marc
    Verbeke, Geert
    Tsiatis, Anastasios A.
    Davidian, Marie
    Rizopoulos, Dimitris
    [J]. STATISTICAL METHODS IN MEDICAL RESEARCH, 2014, 23 (01) : 11 - 41
  • [24] Pseudo-likelihood methodology for partitioned large and complex samples
    Molenberghs, Geert
    Verbeke, Geert
    Iddi, Samuel
    [J]. STATISTICS & PROBABILITY LETTERS, 2011, 81 (07) : 892 - 901
  • [25] Papadakis J. S., 1937, BULLETINDE I AMELIOR, V23, P1
  • [26] Shelbey Samuel., 1975, CRC standard mathematical tables
  • [27] Inference for marginal linear models for clustered longitudinal data with potentially informative cluster sizes
    Wang, Ming
    Kong, Maiying
    Datta, Somnath
    [J]. STATISTICAL METHODS IN MEDICAL RESEARCH, 2011, 20 (04) : 347 - 367
  • [28] Marginal analyses of clustered data when cluster size is informative
    Williamson, JM
    Datta, S
    Satten, GA
    [J]. BIOMETRICS, 2003, 59 (01) : 36 - 42