Fast, closed-form, and efficient estimators for hierarchical models with AR(1) covariance and unequal cluster sizes

被引:5
作者
Hermans, Lisa [1 ]
Nassiri, Vahid [2 ]
Molenberghs, Geert [1 ,2 ]
Kenward, Michael G.
Van der Elst, Wim [1 ,3 ]
Aerts, Marc [1 ]
Verbeke, Geert [1 ,2 ]
机构
[1] Univ Hasselt, I BioStat, B-3590 Diepenbeek, Belgium
[2] Katholieke Univ Leuven, I BioStat, Leuven, Belgium
[3] Janssen Pharmaceut, Beerse, Belgium
关键词
Maximum likelihood; Pseudo-likelihood; Unequal cluster size; GROUP SEQUENTIAL TEST; TRIALS;
D O I
10.1080/03610918.2017.1316395
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This article is concerned with statistically and computationally efficient estimation in a hierarchical data setting with unequal cluster sizes and an AR(1) covariance structure. Maximum likelihood estimation for AR(1) requires numerical iteration when cluster sizes are unequal. A near optimal non-iterative procedure is proposed. Pseudo-likelihood and split-sample methods are used, resulting in computing weights to combine cluster size specific parameter estimates. Results show that the method is statistically nearly as efficient as maximum likelihood, but shows great savings in computation time.
引用
收藏
页码:1492 / 1505
页数:14
相关论文
共 28 条