DOA estimation using multiple measurement vector model with sparse solutions in linear array scenarios

被引:1
作者
Hosseini, Seyyed Moosa [1 ]
Sadeghzadeh, R. A. [1 ]
Virdee, Bal Singh [2 ]
机构
[1] KN Toosi Univ Technol, Fac Elect Engn, Tehran, Iran
[2] London Metropolitan Univ, Ctr Commun Technol, London N7 8DB, England
来源
EURASIP JOURNAL ON WIRELESS COMMUNICATIONS AND NETWORKING | 2017年
关键词
Compressed sensing; Direction of arrival; Multiple measurement vector; Nonuniform linear array; SIGNAL RECONSTRUCTION; MATCHING PURSUIT;
D O I
10.1186/s13638-017-0838-y
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A novel algorithm is presented based on sparse multiple measurement vector (MMV) model for direction of arrival (DOA) estimation of far-field narrowband sources. The algorithm exploits singular value decomposition denoising to enhance the reconstruction process. The proposed multiple nature of MMV model enables the simultaneous processing of several data snapshots to obtain greater accuracy in the DOA estimation. The DOA problem is addressed in both uniform linear array (ULA) and nonuniform linear array (NLA) scenarios. Superior performance is demonstrated in terms of root mean square error and running time of the proposed method when compared with conventional compressed sensing methods such as simultaneous orthogonal matching pursuit (S-OMP), l(2),(1) minimization, and root-MUISC.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] Sparse Bayesian Learning Using Generalized Double Pareto Prior for DOA Estimation
    Wang, Qisen
    Yu, Hua
    Li, Jie
    Ji, Fei
    Chen, Fangjiong
    IEEE SIGNAL PROCESSING LETTERS, 2021, 28 : 1744 - 1748
  • [42] DOA and Polarization Estimation Using an Electromagnetic Vector Sensor Uniform Circular Array Based on the ESPRIT Algorithm
    Wu, Na
    Qu, Zhiyu
    Si, Weijian
    Jiao, Shuhong
    SENSORS, 2016, 16 (12)
  • [43] SIMULTANEOUSLY SPARSE SOLUTIONS TO LINEAR INVERSE PROBLEMS WITH MULTIPLE SYSTEM MATRICES AND A SINGLE OBSERVATION VECTOR
    Zelinski, Adam C.
    Goyal, Vivek K.
    Adalsteinsson, Elfar
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2010, 31 (06) : 4553 - 4579
  • [44] Off-grid DOA estimation using array covariance matrix and block-sparse Bayesian learning
    Zhang, Yi
    Ye, Zhongfu
    Xu, Xu
    Hu, Nan
    SIGNAL PROCESSING, 2014, 98 : 197 - 201
  • [45] A Robust and Statistically Efficient Maximum-Likelihood Method for DOA Estimation Using Sparse Linear Arrays
    Yang, Zai
    Chen, Xinyao
    Wu, Xunmeng
    IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2023, 59 (05) : 6798 - 6812
  • [46] An Efficient Method for Resolving Ambiguity in DOA Estimation with Coprime Linear Array
    Ashok, C.
    Venkateswaran, N.
    CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2022, 41 (04) : 2411 - 2427
  • [47] Minimum Variance Estimation of a Sparse Vector Within the Linear Gaussian Model: An RKHS Approach
    Jung, Alexander
    Schmutzhard, Sebastian
    Hlawatsch, Franz
    Ben-Haim, Zvika
    Eldar, Yonina C.
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2014, 60 (10) : 6555 - 6575
  • [48] A Two-Dimensional DOA Estimation Method Based on Virtual Extension of Sparse Array
    Wang, Guibao
    Zhao, Peiyao
    Wang, Lanmei
    Wang, Xiangyu
    Wang, Huan
    Zhang, Zhongpeng
    JOURNAL OF ELECTRICAL AND COMPUTER ENGINEERING, 2021, 2021
  • [49] DOA Estimation Algorithm for Non-uniform Linear Array with Parallel Factor and Power Loading
    Jiang, Chi
    Zhang, Xiaofei
    Zhang, Licen
    MECHATRONICS ENGINEERING, COMPUTING AND INFORMATION TECHNOLOGY, 2014, 556-562 : 3361 - 3364
  • [50] Infinite Weighted p-Norm Sparse Iterative DOA Estimation via Acoustic Vector Sensor Array under Impulsive Noise
    Liu, Zhiqiang
    Zhang, Yongqing
    Wang, Weidong
    Li, Xiangshui
    Li, Hui
    Shi, Wentao
    Ali, Wasiq
    JOURNAL OF MARINE SCIENCE AND ENGINEERING, 2023, 11 (09)