DOA estimation using multiple measurement vector model with sparse solutions in linear array scenarios

被引:1
|
作者
Hosseini, Seyyed Moosa [1 ]
Sadeghzadeh, R. A. [1 ]
Virdee, Bal Singh [2 ]
机构
[1] KN Toosi Univ Technol, Fac Elect Engn, Tehran, Iran
[2] London Metropolitan Univ, Ctr Commun Technol, London N7 8DB, England
来源
EURASIP JOURNAL ON WIRELESS COMMUNICATIONS AND NETWORKING | 2017年
关键词
Compressed sensing; Direction of arrival; Multiple measurement vector; Nonuniform linear array; SIGNAL RECONSTRUCTION; MATCHING PURSUIT;
D O I
10.1186/s13638-017-0838-y
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A novel algorithm is presented based on sparse multiple measurement vector (MMV) model for direction of arrival (DOA) estimation of far-field narrowband sources. The algorithm exploits singular value decomposition denoising to enhance the reconstruction process. The proposed multiple nature of MMV model enables the simultaneous processing of several data snapshots to obtain greater accuracy in the DOA estimation. The DOA problem is addressed in both uniform linear array (ULA) and nonuniform linear array (NLA) scenarios. Superior performance is demonstrated in terms of root mean square error and running time of the proposed method when compared with conventional compressed sensing methods such as simultaneous orthogonal matching pursuit (S-OMP), l(2),(1) minimization, and root-MUISC.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] A sparse recovery algorithm for DOA estimation using weighted subspace fitting
    Hu, Nan
    Ye, Zhongfu
    Xu, Dongyang
    Cao, Shenghong
    SIGNAL PROCESSING, 2012, 92 (10) : 2566 - 2570
  • [32] The application of high-resolution methods for DOA estimation using a linear antenna array
    Osman, Lotfi
    Sfar, Imen
    Gharsallah, Ali
    INTERNATIONAL JOURNAL OF MICROWAVE AND WIRELESS TECHNOLOGIES, 2015, 7 (01) : 87 - 94
  • [33] Efficient Hybrid DOA Estimation for Massive Uniform Linear Array
    Jhang, Wei
    Chen, Shiaw-Wu
    Chang, Ann-Chen
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2019, E102A (05) : 721 - 724
  • [34] Computationally Efficient DOA Estimation for Massive Uniform Linear Array
    Jhang, Wei
    Chen, Shiaw-Wu
    Chang, Ann-Chen
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2020, E103A (01) : 361 - 365
  • [35] Two-dimensional DOA estimation of coherent signals using acoustic vector sensor array
    Palanisamy, P.
    Kalyanasundaram, N.
    Swetha, P. M.
    SIGNAL PROCESSING, 2012, 92 (01) : 19 - 28
  • [36] DOA estimation using sparse array with gain-phase error based on a novel atomic norm
    Gong, Qishu
    Ren, Shiwei
    Zhong, Shunan
    Wang, Weijiang
    DIGITAL SIGNAL PROCESSING, 2022, 120
  • [37] Improved DOA estimation based on real-valued array covariance using sparse Bayesian learning
    Wang, Yi
    Yang, Minglei
    Chen, Baixiao
    Xiang, Zhe
    SIGNAL PROCESSING, 2016, 129 : 183 - 189
  • [38] 3D sparse sensor array for coherent and uncorrelated signals DOA estimation using novel COMP-ESP
    Dakulagi, Veerendra
    Sharma, Astha
    Patil, Megharani
    Galindo, Miguel Villagomez
    Valencia, Ana Beatriz Martinez
    Nova, Kannan
    SIGNAL IMAGE AND VIDEO PROCESSING, 2025, 19 (04)
  • [39] 2D DOA estimation for noncircular sources using L-shaped sparse array
    Liu, Sheng
    Yang, Lisheng
    Li, Dong
    Cao, Hailin
    Jiang, Qingping
    MULTIDIMENSIONAL SYSTEMS AND SIGNAL PROCESSING, 2018, 29 (02) : 489 - 502
  • [40] DOA estimation of wideband sources by sparse recovery based on uniform circle array
    Zhen, Jiaqi
    Wang, Yanwei
    Liu, Yong
    INTERNATIONAL JOURNAL OF EMBEDDED SYSTEMS, 2020, 13 (03) : 300 - 307