DOA estimation using multiple measurement vector model with sparse solutions in linear array scenarios

被引:1
|
作者
Hosseini, Seyyed Moosa [1 ]
Sadeghzadeh, R. A. [1 ]
Virdee, Bal Singh [2 ]
机构
[1] KN Toosi Univ Technol, Fac Elect Engn, Tehran, Iran
[2] London Metropolitan Univ, Ctr Commun Technol, London N7 8DB, England
来源
EURASIP JOURNAL ON WIRELESS COMMUNICATIONS AND NETWORKING | 2017年
关键词
Compressed sensing; Direction of arrival; Multiple measurement vector; Nonuniform linear array; SIGNAL RECONSTRUCTION; MATCHING PURSUIT;
D O I
10.1186/s13638-017-0838-y
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A novel algorithm is presented based on sparse multiple measurement vector (MMV) model for direction of arrival (DOA) estimation of far-field narrowband sources. The algorithm exploits singular value decomposition denoising to enhance the reconstruction process. The proposed multiple nature of MMV model enables the simultaneous processing of several data snapshots to obtain greater accuracy in the DOA estimation. The DOA problem is addressed in both uniform linear array (ULA) and nonuniform linear array (NLA) scenarios. Superior performance is demonstrated in terms of root mean square error and running time of the proposed method when compared with conventional compressed sensing methods such as simultaneous orthogonal matching pursuit (S-OMP), l(2),(1) minimization, and root-MUISC.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] DOA estimation using multiple measurement vector model with sparse solutions in linear array scenarios
    Seyyed Moosa Hosseini
    R. A. Sadeghzadeh
    Bal Singh Virdee
    EURASIP Journal on Wireless Communications and Networking, 2017
  • [2] A multiple measurement vector approach for DOA estimation
    Hosseini S.M.
    Sadeghzadeh R.A.
    Recent Advances in Electrical and Electronic Engineering, 2017, 10 (03) : 216 - 222
  • [3] Sparse Representation Based DOA Estimation Using a Modified Nested Linear Array
    Huang, Huiping
    Liao, Bin
    Guo, Chongtao
    Huang, Jianjun
    2018 IEEE RADAR CONFERENCE (RADARCONF18), 2018, : 919 - 922
  • [4] DOA estimation of multiple sources in sparse space with an extended array technique
    Xu, Penghao
    Yan, Bing
    Hu, Shouwei
    CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2016, 19 (03): : 1437 - 1447
  • [5] DOA estimation of acoustic vector array based on the sparse decomposition theory
    Fu, J. (gama_captain1@yahoo.com.cn), 1600, Editorial Board of Journal of Harbin Engineering (34): : 280 - 286
  • [6] Efficient sparse representation algorithm for accurate DOA estimation of multiple targets with single measurement vector
    Lee, Seong-Hyeon
    Choi, In-O
    Kang, Min-Seok
    Kim, Kyung-Tae
    MICROWAVE AND OPTICAL TECHNOLOGY LETTERS, 2018, 60 (01) : 31 - 37
  • [7] A Robust Multi Sample Compressive Sensing Technique for DOA Estimation Using Sparse Antenna Array
    Mirza, Hamid Ali
    Raja, Muhammad Asif Zahoor
    Chaudhary, Naveed Ishtiaq
    Qureshi, Ijaz Mansoor
    Malik, Aqdas Naveed
    IEEE ACCESS, 2020, 8 : 140848 - 140861
  • [8] DOA estimation of multiple sources in sparse space with an extended array technique
    Penghao Xu
    Bing Yan
    Shouwei Hu
    Cluster Computing, 2016, 19 : 1437 - 1447
  • [9] DOA estimation for nonuniform linear arrays using Root-MUSIC with Sparse recovery method
    Du, Xinpeng
    Xu, Xiang
    Cheng, Lizhi
    Advances in Intelligent Systems and Computing, 2013, 212 : 385 - 392
  • [10] Design And Analysis of the Sparse Array for DoA Estimation of Noncircular Signals
    Gupta, Payal
    Agrawal, Monika
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2019, 67 (02) : 460 - 473