Refinement of the logarithmic law of the wall

被引:3
作者
Laadhari, F. [1 ]
机构
[1] Univ Lyon, Univ Claude Bernard Lyon 1, Lab Mecan Fluides & Acoust, Ecole Cent Lyon,INSA Lyon,CNRS UMR 5509, 36 Ave Guy de Collongue, F-69134 Ecully, France
来源
PHYSICAL REVIEW FLUIDS | 2019年 / 4卷 / 05期
关键词
DIRECT NUMERICAL-SIMULATION; TURBULENT-BOUNDARY-LAYERS; ZERO-PRESSURE-GRADIENT; PIPE-FLOW; CHANNEL; SMOOTH;
D O I
10.1103/PhysRevFluids.4.054605
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Available direct numerical simulation of turbulent channel flow at moderately high Reynolds numbers data show that the logarithmic diagnostic function is a linearly decreasing function of the outer-normalized wall distance eta = y/delta with a slope proportional to the von Karman constant, kappa = 0.4. The validity of this result for turbulent pipe and boundary layer flows is assessed by comparison with the mean velocity profile from experimental data. The results suggest the existence of a flow-independent logarithmic law (U) over bar (+) = (U) over bar /u(tau) = (1/kappa) ln(y*/a), where y* = yUs/nu with U-S = yS(y) being the local shear velocity and the two flow-independent constants kappa = 0.4 and a = 0.36. The range of its validity extends from the inner-normalized wall distance y(+) = 300 up to half the outer-length scale eta = 0.5 for internal flows, and eta = 0.2 for zero-pressure-gradient turbulent boundary layers. Likewise, and within the same range, the mean velocity deficit follows a flow-dependent logarithmic law as a function of a local mean-shear-based coordinate. Furthermore, it is illustrated how the classical friction laws for smooth pipe and zero-pressure-gradient turbulent boundary layer are recovered from this scaling.
引用
收藏
页数:15
相关论文
共 59 条
  • [1] Direct numerical simulation of a 30R long turbulent pipe flow at Reτ=3008
    Ahn, Junsun
    Lee, Jae Hwa
    Lee, Jin
    Kang, Ji-hoon
    Sung, Hyung Jin
    [J]. PHYSICS OF FLUIDS, 2015, 27 (06)
  • [2] Estimating the value of von Karman's constant in turbulent pipe flow
    Bailey, S. C. C.
    Vallikivi, M.
    Hultmark, M.
    Smits, A. J.
    [J]. JOURNAL OF FLUID MECHANICS, 2014, 749 : 79 - 98
  • [3] Obtaining accurate mean velocity measurements in high Reynolds number turbulent boundary layers using Pitot tubes
    Bailey, S. C. C.
    Hultmark, M.
    Monty, J. P.
    Alfredsson, P. H.
    Chong, M. S.
    Duncan, R. D.
    Fransson, J. H. M.
    Hutchins, N.
    Marusic, I.
    McKeon, B. J.
    Nagib, H. M.
    Orlu, R.
    Segalini, A.
    Smits, A. J.
    Vinuesa, R.
    [J]. JOURNAL OF FLUID MECHANICS, 2013, 715 : 642 - 670
  • [4] On the convergence and scaling of high-order statistical moments in turbulent pipe flow using direct numerical simulations
    Bauer, C.
    Feldmann, D.
    Wagner, C.
    [J]. PHYSICS OF FLUIDS, 2017, 29 (12)
  • [5] Velocity statistics in turbulent channel flow up to Reτ=4000
    Bernardini, Matteo
    Pirozzoli, Sergio
    Orlandi, Paolo
    [J]. JOURNAL OF FLUID MECHANICS, 2014, 742 : 171 - 191
  • [6] Recent developments in scaling of wall-bounded flows
    Buschmann, Matthias H.
    Gad-el-Hak, Mohamed
    [J]. PROGRESS IN AEROSPACE SCIENCES, 2006, 42 (5-6) : 419 - 467
  • [7] Castillo L, 2002, J TURBUL, V3
  • [8] Reynolds number effects in DNS of pipe flow and comparison with channels and boundary layers
    Chin, C.
    Monty, J. P.
    Ooi, A.
    [J]. INTERNATIONAL JOURNAL OF HEAT AND FLUID FLOW, 2014, 45 : 33 - 40
  • [9] Clauser F.H., 1956, Advances in Applied Mechanics, V4, P1, DOI DOI 10.1016/S0065-2156(08)70370-3
  • [10] Reynolds-number scaling of the flat-plate turbulent boundary layer
    DeGraaff, DB
    Eaton, JK
    [J]. JOURNAL OF FLUID MECHANICS, 2000, 422 : 319 - 346