Kinetic limit for wave propagation in a random medium

被引:64
作者
Lukkarinen, Jani [1 ]
Spohn, Herbert [1 ]
机构
[1] Tech Univ Munich, Zentrum Math, D-85747 Garching, Germany
关键词
LINEAR BOLTZMANN-EQUATION; RANDOM SCHRODINGER-EQUATION; WIGNER TRANSFORMS; TRANSPORT;
D O I
10.1007/s00205-006-0005-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study crystal dynamics in the harmonic approximation. The atomic masses are weakly disordered, in the sense that their deviation from uniformity is of the order root epsilon. The dispersion relation is assumed to be a Morse function and to suppress crossed recollisions. We then prove that in the limit epsilon -> 0, the disorder-averaged Wigner function on the kinetic scale, time and space of order epsilon(-1), is governed by a linear Boltzmann equation.
引用
收藏
页码:93 / 162
页数:70
相关论文
共 23 条
[1]  
[Anonymous], 1974, FUNCTIONAL ANAL
[2]   Self-averaging of Wigner transforms in random media [J].
Bal, G ;
Komorowski, T ;
Ryzhik, L .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2003, 242 (1-2) :81-135
[3]   Radiative transport in a periodic structure [J].
Bal, G ;
Fannjiang, A ;
Papanicolaou, G ;
Ryzhik, L .
JOURNAL OF STATISTICAL PHYSICS, 1999, 95 (1-2) :479-494
[4]   Localization lengths and Boltzmann limit for the Anderson model at small disorders in dimension 3 [J].
Chen, T .
JOURNAL OF STATISTICAL PHYSICS, 2005, 120 (1-2) :279-337
[5]  
CHEN T, 2004, ARXIVORGMATHPH040703
[6]   The linear Boltzmann equation as the low density limit of a random Schrodinger equation [J].
Eng, D ;
Erdös, L .
REVIEWS IN MATHEMATICAL PHYSICS, 2005, 17 (06) :669-743
[7]  
Erdos L, 2000, COMMUN PUR APPL MATH, V53, P667, DOI 10.1002/(SICI)1097-0312(200006)53:6<667::AID-CPA1>3.0.CO
[8]  
2-5
[9]   Linear Boltzmann equation as the long time dynamics of an electron weakly coupled to a phonon field [J].
Erdos, L .
JOURNAL OF STATISTICAL PHYSICS, 2002, 107 (5-6) :1043-1127
[10]  
ERDOS L, 2005, ARXIVORGMATHPH050202