Weak bimonoids in duoidal categories

被引:2
作者
Chen, Yuanyuan [1 ]
Boehm, Gabriella [2 ]
机构
[1] Nanjing Agr Univ, Coll Sci, Nanjing 210095, Jiangsu, Peoples R China
[2] Wigner Res Ctr Phys, H-1525 Budapest, Hungary
基金
匈牙利科学研究基金会;
关键词
MONOIDAL CATEGORIES; HOPF-ALGEBRAS; FUNCTORS; MONADS;
D O I
10.1016/j.jpaa.2014.04.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Weak bimonoids in duoidal categories are introduced. They provide a common generalization of bimonoids in duoidal categories and of weak bimonoids in braided monoidal categories. Under the assumption that idempotent morphisms in the base category split, they are shown to induce weak bimonads (in four symmetric ways). As a consequence, they have four separable Frobenius base (co)monoids, two in each of the underlying monoidal categories. Hopf modules over weak bimonoids are defined by weakly lifting the induced comonad to the Eilenberg-Moore category of the induced monad. Making appropriate assumptions on the duoidal category in question, the fundamental theorem of Hopf modules is proven which says that the category of modules over one of the base monoids is equivalent to the category of Hopf modules if and only if a Galois-type comonad morphism is an isomorphism. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:2240 / 2273
页数:34
相关论文
共 50 条
  • [21] Monoidal Categories and the Gerstenhaber Bracket in Hochschild Cohomology
    Hermann, Reiner
    [J]. MEMOIRS OF THE AMERICAN MATHEMATICAL SOCIETY, 2016, 243 (1151) : I - +
  • [22] On the category of weak bialgebras
    Boehm, Gabriella
    Gomez-Torrecillas, Jose
    Lopez-Centella, Esperanza
    [J]. JOURNAL OF ALGEBRA, 2014, 399 : 801 - 844
  • [23] Incidence categories
    Szczesny, Matt
    [J]. JOURNAL OF PURE AND APPLIED ALGEBRA, 2011, 215 (04) : 303 - 309
  • [24] Duality Categories
    Ksouri, Ramzi
    [J]. APPLIED CATEGORICAL STRUCTURES, 2016, 24 (03) : 283 - 314
  • [25] Sheaf Categories on semicartesian monoidal categories: logical and cohomological aspects
    Tenorio, Ana Luiza
    Mariano, Hugo Luiz
    [J]. BOLETIN DE MATEMATICAS, 2023, 30 (02): : 1 - 6
  • [26] Gorenstein projective bimodules via monomorphism categories and filtration categories
    Hu, Wei
    Luo, Xiu-Hua
    Xiong, Bao-Lin
    Zhou, Guodong
    [J]. JOURNAL OF PURE AND APPLIED ALGEBRA, 2019, 223 (03) : 1014 - 1039
  • [27] On Frobenius and separable algebra extensions in monoidal categories: applications to wreaths
    Bulacu, Daniel
    Torrecillas, Blas
    [J]. JOURNAL OF NONCOMMUTATIVE GEOMETRY, 2015, 9 (03) : 707 - 774
  • [28] CATEGORIFIED TRACE FOR MODULE TENSOR CATEGORIES OVER BRAIDED TENSOR CATEGORIES
    Henriques, Andre
    Penneys, David
    Tener, James
    [J]. DOCUMENTA MATHEMATICA, 2016, 21 : 1089 - 1150
  • [29] Eilenberg-Moore and Kleisli Type Categories for Bimonads on Arbitrary Categories
    Agore, A. L.
    [J]. RESULTS IN MATHEMATICS, 2022, 77 (06)
  • [30] The Fundamental Theorem for weak braided bimonads
    Mesablishvili, Bachuki
    Wisbauer, Robert
    [J]. JOURNAL OF ALGEBRA, 2017, 490 : 55 - 103