Weak bimonoids in duoidal categories

被引:2
|
作者
Chen, Yuanyuan [1 ]
Boehm, Gabriella [2 ]
机构
[1] Nanjing Agr Univ, Coll Sci, Nanjing 210095, Jiangsu, Peoples R China
[2] Wigner Res Ctr Phys, H-1525 Budapest, Hungary
基金
匈牙利科学研究基金会;
关键词
MONOIDAL CATEGORIES; HOPF-ALGEBRAS; FUNCTORS; MONADS;
D O I
10.1016/j.jpaa.2014.04.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Weak bimonoids in duoidal categories are introduced. They provide a common generalization of bimonoids in duoidal categories and of weak bimonoids in braided monoidal categories. Under the assumption that idempotent morphisms in the base category split, they are shown to induce weak bimonads (in four symmetric ways). As a consequence, they have four separable Frobenius base (co)monoids, two in each of the underlying monoidal categories. Hopf modules over weak bimonoids are defined by weakly lifting the induced comonad to the Eilenberg-Moore category of the induced monad. Making appropriate assumptions on the duoidal category in question, the fundamental theorem of Hopf modules is proven which says that the category of modules over one of the base monoids is equivalent to the category of Hopf modules if and only if a Galois-type comonad morphism is an isomorphism. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:2240 / 2273
页数:34
相关论文
共 50 条
  • [1] Weak Multiplier Bimonoids
    Bohm, Gabriella
    Gomez-Torrecillas, Jose
    Lack, Stephen
    APPLIED CATEGORICAL STRUCTURES, 2018, 26 (01) : 47 - 111
  • [2] TANNAKA DUALITY AND CONVOLUTION FOR DUOIDAL CATEGORIES
    Booker, Thomas
    Street, Ross
    THEORY AND APPLICATIONS OF CATEGORIES, 2013, 28 : 166 - 205
  • [3] A Skew-Duoidal Eckmann-Hilton Argument and Quantum Categories
    Lack, Stephen
    Street, Ross
    APPLIED CATEGORICAL STRUCTURES, 2014, 22 (5-6) : 789 - 803
  • [4] A simplicial approach to multiplier bimonoids
    Bohm, Gabriella
    Lack, Stephen
    BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2017, 24 (01) : 107 - 122
  • [5] WEAK BIALGEBRAS AND MONOIDAL CATEGORIES
    Boehm, G.
    Caenepeel, S.
    Janssen, K.
    COMMUNICATIONS IN ALGEBRA, 2011, 39 (12) : 4584 - 4607
  • [6] A Category of Multiplier Bimonoids
    Bohm, Gabriella
    Lack, Stephen
    APPLIED CATEGORICAL STRUCTURES, 2017, 25 (02) : 279 - 301
  • [7] (WEAK) INCIDENCE BIALGEBRAS OF MONOIDAL CATEGORIES
    Kraehmer, Ulrich
    Rotheray, Lucia
    GLASGOW MATHEMATICAL JOURNAL, 2021, 63 (01) : 139 - 157
  • [8] ON THE 2-CATEGORIES OF WEAK DISTRIBUTIVE LAWS
    Boehm, Gabriella
    Lack, Stephen
    Street, Ross
    COMMUNICATIONS IN ALGEBRA, 2011, 39 (12) : 4567 - 4583
  • [9] Algebraic structures in comodule categories over weak bialgebras
    Walton, Chelsea
    Wicks, Elizabeth
    Won, Robert
    COMMUNICATIONS IN ALGEBRA, 2022, 50 (07) : 2877 - 2910
  • [10] MODULE CATEGORIES OVER EQUIVARIANTIZED TENSOR CATEGORIES
    Mombelli, Martin
    Natale, Sonia
    MOSCOW MATHEMATICAL JOURNAL, 2017, 17 (01) : 97 - 128