Chunking with Support Vector Machines

被引:0
作者
Kudo, T
Matsumoto, Y
机构
来源
2ND MEETING OF THE NORTH AMERICAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, PROCEEDINGS OF THE CONFERENCE | 2001年
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We apply Support Vector Machines (SVMs) to identify English base phrases (chunks). SVMs are known to achieve high generalization performance even with input data of high dimensional feature spaces. Furthermore, by the Kernel principle, SVMs can carry out training with smaller computational overhead independent of their dimensionality. We apply weighted voting of 8 SVMs-based systems trained with distinct chunk representations. Experimental results show that our approach achieves higher accuracy than previous approaches.
引用
收藏
页码:192 / 199
页数:8
相关论文
共 22 条
[1]  
[Anonymous], 2000, P 2 WORKSH LEARN LAN, DOI DOI 10.3115/1117601.1117639
[2]  
[Anonymous], P CONLL 2000 LLL 200
[3]  
[Anonymous], 1996, ICML 96
[4]  
[Anonymous], P WVLC 3
[5]  
[Anonymous], 2000, P 2 WORKSH LEARN LOG
[6]  
BRILL E, 1995, COMPUTATIONAL LINGUI, V21
[7]  
CHAPELLE O, 2000, ADV NEURAL INFORMATI, V12
[8]  
CORTES C, 1995, MACH LEARN, V20, P273, DOI 10.1023/A:1022627411411
[9]  
Dietterich TG, 1994, J ARTIF INTELL RES, V2, P263
[10]  
ERIN L, 2000, INT C MACH LEARN ICM, P9