G-structure on the cohomology of Hopf algebras

被引:17
|
作者
Farinati, MA [1 ]
Solotar, AL [1 ]
机构
[1] Univ Buenos Aires, Fac Ciencias Exactas & Nat, Dept Matemat, RA-1428 Buenos Aires, DF, Argentina
关键词
Gerstenhaber algebras; Hopf algebras; Hochschild cohomology;
D O I
10.1090/S0002-9939-04-07274-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove that Ext(A)(circle)(k, k) is a Gerstenhaber algebra, where A is a Hopf algebra. In case A = D(H) is the Drinfeld double of a finite-dimensional Hopf algebra H, our results imply the existence of a Gerstenhaber bracket on H-GS(circle)(H, H). This fact was conjectured by R. Taillefer. The method consists of identifying H-GS(circle)(H, H) congruent to Ext(A)(circle)(k, k) as a Gerstenhaber subalgebra of H-circle(A, A) (the Hochschild cohomology of A).
引用
收藏
页码:2859 / 2865
页数:7
相关论文
共 50 条
  • [41] Cyclic Cohomology and Hopf Algebra Symmetry
    Alain Connes
    Henri Moscovici
    Letters in Mathematical Physics, 2000, 52 : 1 - 28
  • [42] Cup coproducts in Hopf cyclic cohomology
    Hassanzadeh, Mohammad
    Khalkhali, Masoud
    JOURNAL OF HOMOTOPY AND RELATED STRUCTURES, 2015, 10 (03) : 347 - 373
  • [43] Cyclic cohomology and Hopf algebra symmetry
    Connes, A
    Moscovici, H
    LETTERS IN MATHEMATICAL PHYSICS, 2000, 52 (01) : 1 - 28
  • [44] Cyclic cohomology and Hopf algebra symmetry
    Connes, A
    Moscovici, H
    CONFERENCE MOSHE FLATO 1999, VOL I: QUANTIZATION, DEFORMATIONS, AND SYMMETRIES, 2000, 21 : 121 - 147
  • [45] NEW COEFFICIENTS FOR HOPF CYCLIC COHOMOLOGY
    Hassanzadeh, Mohammad
    COMMUNICATIONS IN ALGEBRA, 2014, 42 (12) : 5287 - 5298
  • [46] LIE BRACKETS ON HOPF ALGEBRA COHOMOLOGY
    Karadag, Tekin
    Witherspoon, Sarah
    PACIFIC JOURNAL OF MATHEMATICS, 2022, 316 (02) : 395 - 407
  • [47] Cup coproducts in Hopf cyclic cohomology
    Mohammad Hassanzadeh
    Masoud Khalkhali
    Journal of Homotopy and Related Structures, 2015, 10 : 347 - 373
  • [48] Universal enveloping algebras of Poisson Hopf algebras
    Lu, Jiafeng
    Wang, Xingting
    Zhuang, Guangbin
    JOURNAL OF ALGEBRA, 2015, 426 : 92 - 136
  • [49] Quantum symmetric algebras as braided hopf algebras
    de Chela, DF
    Algebraic Structures and Their Representations, 2005, 376 : 261 - 271
  • [50] On the cohomology of solvable Leibniz algebras
    Feldvoss, Jorg
    Wagemann, Friedrich
    INDAGATIONES MATHEMATICAE-NEW SERIES, 2024, 35 (01): : 87 - 113