Semi-supervised Learning with Constraints for Person Identification in Multimedia Data

被引:56
作者
Baeuml, Martin [1 ]
Tapaswi, Makarand [1 ]
Stiefelhagen, Rainer [1 ]
机构
[1] Karlsruhe Inst Technol, D-76131 Karlsruhe, Germany
来源
2013 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR) | 2013年
关键词
D O I
10.1109/CVPR.2013.462
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We address the problem of person identification in TV series. We propose a unified learning framework for multi-class classification which incorporates labeled and unlabeled data, and constraints between pairs of features in the training. We apply the framework to train multinomial logistic regression classifiers for multi-class face recognition. The method is completely automatic, as the labeled data is obtained by tagging speaking faces using subtitles and fan transcripts of the videos. We demonstrate our approach on six episodes each of two diverse TV series and achieve state-of-the-art performance.
引用
收藏
页码:3602 / 3609
页数:8
相关论文
共 17 条
[1]  
[Anonymous], ICCV
[2]  
[Anonymous], 2007, ICCV
[3]  
[Anonymous], 2005, NIPS
[4]  
[Anonymous], BMVC
[5]  
Cour T., 2008, ECCV
[6]  
Cour T, 2011, J MACH LEARN RES, V12, P1501
[7]  
EKENEL HK, 2006, CVPR BIOM WORKSH
[8]  
Froba B., 2004, FG, P2
[9]  
Hastie T., 2009, ELEMENTS STAT LEARNI, DOI 10.1007/978-0-387-84858-7
[10]  
Kimeldorf G., 1971, J MATH ANAL APPL