THE DETERMINANT MAPS AND K0

被引:0
|
作者
Yin Fancheng [1 ]
Zhu Xiaosheng [2 ]
机构
[1] Hohai Univ, Dept Math, Nanjing 210098, Jiangsu, Peoples R China
[2] Nanjing Univ, Dept Math, Nanjing 210093, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Determinant map; Grothendieck groups; power stably free; MM ring; MODULES;
D O I
10.1216/RMJ-2014-44-1-91
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given a commutative ring R, the determinant map det(0): Rk(0)(R) -> Pic (R) given by [M] - [Rm] bar right arrow (boolean AND(m) M) is a homomorphism from the additive group of Rk(0)(R) to the multiplicative group Pic (R). In this paper, some properties of the determinant map det0 are given and some results in [5] are extended.
引用
收藏
页码:91 / 102
页数:12
相关论文
共 8 条
  • [1] Reducers and K0 with support
    Chanda, Subhajit
    Sane, Sarang
    COMMUNICATIONS IN ALGEBRA, 2022, 50 (02) : 635 - 660
  • [2] STATE SPACES OF K0 GROUPS OF SOME RINGS
    Ren, J.
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2017, 43 (07): : 2507 - 2516
  • [3] The state space of K0 of exchange rings
    Li, QS
    Tong, WT
    COMMUNICATIONS IN ALGEBRA, 2005, 33 (11) : 3841 - 3853
  • [4] Categories of power stably free modules and their K0 groups
    朱晓胜
    佟文廷
    Science China Mathematics, 1997, (12) : 1239 - 1246
  • [5] Categories of power stably free modules and their K-0 groups
    Zhu, XS
    Tong, WT
    SCIENCE IN CHINA SERIES A-MATHEMATICS PHYSICS ASTRONOMY, 1997, 40 (12): : 1239 - 1246
  • [6] Biderivations and linear commuting maps on the restricted contact lie algebras K(n; 1)
    Chang, Yuan
    Chen, Liangyun
    Zhou, Xin
    QUAESTIONES MATHEMATICAE, 2021, 44 (11) : 1529 - 1540
  • [7] Lifting Defects for Nonstable K0-theory of Exchange Rings and C*-algebras
    Wehrung, Friedrich
    ALGEBRAS AND REPRESENTATION THEORY, 2013, 16 (02) : 553 - 589
  • [8] Orbifold theory of the affine vertex operator superalgebra L<(osp(1|2))over cap>(k, 0)
    Jiang, Cuipo
    Wang, Qing
    JOURNAL OF ALGEBRA, 2024, 644 : 442 - 460