NIL-AUTOMORPHISMS OF GROUPS WITH RESIDUAL PROPERTIES

被引:2
作者
Casolo, Carlo [1 ]
Puglisi, Orazio [1 ]
机构
[1] Univ Florence, Dipartimento Matemat U Dini, I-50134 Florence, Italy
关键词
Normal Subgroup; Nilpotent Group; Proper Subgroup; Residual Property; Open Subgroup;
D O I
10.1007/s11856-013-0041-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be any group and x an automorphism of G. The automorphism x is said to be nil if, for every g is an element of G, there exists n = n(g) such that [g, (n) x] = 1. If n can be chosen independently of g, we say that x is n-unipotent. A nil (resp. unipotent) automorphism x could also be seen as a left Engel element (resp. left n-Engel element) in the group G < x >. When G is a finite dimensional vector space, groups of unipotent linear automorphisms turn out to be nilpotent, so that one might ask to what extent this result can be extended to a more general setting. In this paper we study finitely generated groups of nil or unipotent automorphisms of groups with residual properties (e. g. locally graded groups, residually finite groups, profinite groups), proving that such groups are nilpotent.
引用
收藏
页码:91 / 110
页数:20
相关论文
共 10 条
[1]   ENGELSCHE ELEMENTE NOETHERSCHER GRUPPEN [J].
BAER, R .
MATHEMATISCHE ANNALEN, 1957, 133 (03) :256-270
[2]   Groups with all subgroups subnormal [J].
Casolo, Carlo } .
NOTE DI MATEMATICA, 2008, 28 :1-149
[3]   On right n-Engel subgroups [J].
Crosby, Peter G. ;
Traustason, Gunnar .
JOURNAL OF ALGEBRA, 2010, 324 (04) :875-883
[4]  
Dixon J. D., 1991, LONDON MATH SOC LECT, V157
[5]  
Hall P., 1958, Ill. J. Math., V2, P787
[6]  
Hall P., 1969, Queen Mary College Mathematics Notes
[7]   FINITE-GROUPS OF AUTOMORPHISMS OF LOCALLY SOLUBLE GROUPS [J].
HARTLEY, B .
JOURNAL OF ALGEBRA, 1979, 57 (01) :242-257
[8]  
Plotkin B, 1972, GROUPS AUTOMORPHISMS
[9]   2-GENERATOR CONDITIONS FOR RESIDUALLY FINITE-GROUPS [J].
WILSON, JS .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1991, 23 :239-248
[10]  
WILSON JS, 1998, LONDON MATH SOC MONO, V19