Note on forced Burgers turbulence

被引:18
|
作者
Kraichnan, RH
机构
[1] Santa Fe, NM 87501-2626, PMB 108
关键词
D O I
10.1063/1.870235
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
A putative powerlaw range of the probability density of velocity gradient in high-Reynolds-number forced Burgers turbulence is studied. In the absence of information about shock locations, elementary conservation and stationarity relations imply that the exponent - alpha in this range satisfies alpha greater than or equal to 3, if dissipation within the power-law range is due to isolated shocks. A generalized model of shock birth and growth implies alpha = 7/2 if initial data and forcing are spatially homogeneous and obey Gaussian statistics. Arbitrary values alpha greater than or equal to 3 can be realized by suitably constructed homogeneous, non-Gaussian initial data and forcing. (C) 1999 American Institute of Physics. [S1070-6631(99)00112-9].
引用
收藏
页码:3738 / 3742
页数:5
相关论文
共 50 条
  • [21] BURGERS TURBULENCE MODELS
    CASE, KM
    CHIU, SC
    PHYSICS OF FLUIDS, 1969, 12 (09) : 1799 - &
  • [22] SOLUTION OF FORCED BURGERS EQUATION
    JENG, DT
    MEECHAM, WC
    PHYSICS OF FLUIDS, 1972, 15 (03) : 504 - &
  • [23] Density fields in burgers and KdV-burgers turbulence
    Saichev, AI
    Woyczynski, WA
    SIAM JOURNAL ON APPLIED MATHEMATICS, 1996, 56 (04) : 1008 - 1038
  • [24] ASYMPTOTIC PROPERTIES OF BURGERS TURBULENCE
    KIDA, S
    JOURNAL OF FLUID MECHANICS, 1979, 93 (JUL) : 337 - 377
  • [25] Burgers turbulence and dynamical systems
    Iturriaga, R
    Khanin, K
    EUROPEAN CONGRESS OF MATHEMATICS, VOL I, 2001, 201 : 429 - 443
  • [26] Viscous instanton for Burgers' turbulence
    Balkovsky, E
    Falkovich, G
    Kolokolov, I
    Lebedev, V
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 1997, 11 (26-27): : 3223 - 3245
  • [27] Multidimensional Potential Burgers Turbulence
    Alexandre Boritchev
    Communications in Mathematical Physics, 2016, 342 : 441 - 489
  • [28] Universality Classes in Burgers Turbulence
    Govind Menon
    Robert L. Pego
    Communications in Mathematical Physics, 2007, 273 : 177 - 202
  • [29] Burgers turbulence, intermittency, and nonuniversality
    Boldyrev, S.A.
    Physics of Plasmas, 1998, 5 (5 pt 2):
  • [30] Disordered systems and burgers' turbulence
    Mézard, M
    XIITH INTERNATIONAL CONGRESS OF MATHEMATICAL PHYSICS (ICMP '97), 1999, : 107 - 119