On random fractals with infinite branching: Definition, measurability, dimensions

被引:0
作者
Berlinkov, Artemi
机构
[1] not available, St.-Petersburg, 197227
来源
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES | 2013年 / 49卷 / 04期
关键词
Packing dimension; Minkowski dimension; Random fractal; ITERATED FUNCTION SYSTEMS; V-VARIABLE FRACTALS;
D O I
10.1214/12-AIHP502
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We investigate the definition and measurability questions of random fractals with infinite branching, and find, under certain conditions, a formula for the upper and lower Minkowski dimensions. For the case of a random self-similar set we obtain the packing dimension.
引用
收藏
页码:1080 / 1089
页数:10
相关论文
共 14 条
  • [1] [Anonymous], GEOMETRY SETS MEASUR
  • [2] V-variable fractals: dimension results
    Barnsley, Michael
    Hutchinson, John E.
    Stenflo, Orjan
    [J]. FORUM MATHEMATICUM, 2012, 24 (03) : 445 - 470
  • [3] V-variable fractals:: Fractals with partial self similarity
    Barnsley, Michael F.
    Hutchinson, John E.
    Stenflo, Oerjan
    [J]. ADVANCES IN MATHEMATICS, 2008, 218 (06) : 2051 - 2088
  • [4] Random conformal snowflakes
    Beliaev, Dmitri
    Smirnov, Stanislav
    [J]. ANNALS OF MATHEMATICS, 2010, 172 (01) : 597 - 615
  • [5] Packing measure and dimension of random fractals
    Berlinkov, A
    Mauldin, RD
    [J]. JOURNAL OF THEORETICAL PROBABILITY, 2002, 15 (03) : 695 - 713
  • [6] RANDOM FRACTALS
    FALCONER, KJ
    [J]. MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1986, 100 : 559 - 582
  • [7] Falconer KJ., 2003, FRACTAL GEOMETRY MAT
  • [8] Fraser J. M., 2011, DIMENSIONS MEASURE T
  • [9] Graf S., 1988, MEM AM MATH SOC, V381
  • [10] Measure and dimension functions: Measurability and densities
    Mattila, P
    Mauldin, RD
    [J]. MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1997, 121 : 81 - 100