High Accuracy Predictive Model on Breast Cancer Using Ensemble Approach of Supervised Machine Learning Algorithms

被引:1
|
作者
Kaul, Chaitanya [1 ]
Sharma, Neeraj [1 ]
机构
[1] Amity Univ Gurugram, Amity Sch Engn & Technol, Gurgaon, India
来源
2021 INTERNATIONAL CONFERENCE ON COMPUTATIONAL PERFORMANCE EVALUATION (COMPE-2021) | 2021年
关键词
KNN; SVM; Random Forest; Breast Cancer; Decision Tree Classifiers;
D O I
10.1109/ComPE53109.2021.9752254
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This research article is based on the ensemble approach of different supervised machine learning algorithms to identify the early stages of breast cancer problems. The World Health Organization (WHO) approved that existence of the breast tumor is high for the women in developing countries and it is one of the significant research issues in current scenario in the real world. In this research article researcher used the 30 features to extract and predict accurate prediction on breast cancer using ensemble approach of supervised machine learning algorithms. It is a great challenge in designing a machine learning model to evaluate the performance of the classification of breast tumor. Implementing an efficient classification methodology will support in resolving the complications in analyzing breast cancer. This proposed model employs four machine learning (ML) algorithms Decision tree classifiers, Random Forest KNN, and support vector machine (SVM) and found support vector machine (SVM) which given the high accuracy of 0.976688 among them for the categorization of breast tumor in women. This classification includes the two levels of disease as benign or malignant. The researcher also used the other parameters and evaluated this predictive model using Precision, Recall and F1-Score. The data analysis report is proved that this predictive model is having 98% accuracy level to predict the cancer at early stages in women.
引用
收藏
页码:71 / +
页数:6
相关论文
共 50 条
  • [41] Comparative study and analysis on skin cancer detection using machine learning and deep learning algorithms
    Nancy, V. Auxilia Osvin
    Prabhavathy, P.
    Arya, Meenakshi S.
    Ahamed, B. Shamreen
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 82 (29) : 45913 - 45957
  • [42] Breast cancer classification along with feature prioritization using machine learning algorithms
    Abdullah-Al Nahid
    Md. Johir Raihan
    Abdullah Al-Mamun Bulbul
    Health and Technology, 2022, 12 : 1061 - 1069
  • [43] Comparative analysis of classification algorithms on the breast cancer recurrence using machine learning
    Mikhailova, Valentina
    Anbarjafari, Gholamreza
    MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 2022, 60 (09) : 2589 - 2600
  • [44] Survey of machine learning algorithms for breast cancer detection using mammogram images
    Meenalochini, G.
    Ramkumar, S.
    MATERIALS TODAY-PROCEEDINGS, 2021, 37 : 2738 - 2743
  • [45] Breast cancer classification along with feature prioritization using machine learning algorithms
    Abdullah-Al Nahid
    Raihan, Md Johir
    Bulbul, Abdullah Al-Mamun
    HEALTH AND TECHNOLOGY, 2022, 12 (06) : 1061 - 1069
  • [46] Comparative analysis of classification algorithms on the breast cancer recurrence using machine learning
    Valentina Mikhailova
    Gholamreza Anbarjafari
    Medical & Biological Engineering & Computing, 2022, 60 : 2589 - 2600
  • [47] Comparative study and analysis on skin cancer detection using machine learning and deep learning algorithms
    V. Auxilia Osvin Nancy
    P. Prabhavathy
    Meenakshi S. Arya
    B. Shamreen Ahamed
    Multimedia Tools and Applications, 2023, 82 : 45913 - 45957
  • [48] Heart disease prediction using supervised machine learning algorithms: Performance analysis and comparison
    Ali, Md Mamun
    Paul, Bikash Kumar
    Ahmed, Kawsar
    Bui, Francis M.
    Quinn, Julian M. W.
    Moni, Mohammad Ali
    COMPUTERS IN BIOLOGY AND MEDICINE, 2021, 136
  • [49] Heart Disease Prediction Using Ensemble Tree Algorithms: A Supervised Learning Perspective
    Sakyi-Yeboah, Enoch
    Agyemang, Edmund Fosu
    Agbenyeavu, Vincent
    Osei-Nkwantabisa, Akua
    Kissi-Appiah, Priscilla
    Moshood, Lateef
    Agbota, Lawrence
    Nortey, Ezekiel N. N.
    APPLIED COMPUTATIONAL INTELLIGENCE AND SOFT COMPUTING, 2025, 2025 (01)
  • [50] Prediction Model of Breast Cancer Survival Months: A Machine Learning Approach
    Naser, Mohammad Y. M.
    Chambers, Destini
    Bhattacharya, Sylvia
    SOUTHEASTCON 2023, 2023, : 851 - 855