Magnetic control of particle trapping in a hybrid plasmonic nanopore

被引:14
|
作者
Maccaferri, Nicolo [1 ]
Vavassori, Paolo [2 ,3 ]
Garoli, Denis [4 ,5 ]
机构
[1] Univ Luxembourg, Dept Phys & Mat Sci, 162a,Ave Faiencerie, L-1511 Luxembourg, Luxembourg
[2] CIC NanoGUNE BRTA, Tolosa Hiribidea 76, E-20018 Donostia San Sebastian, Spain
[3] Ikerbasque, Basque Fdn Sci, Plaza Euskadi 5, E-48009 Bilbao, Spain
[4] Free Univ Bozen, Fac Sci & Technol, Piazza Univ 5, I-39100 Bolzano, Italy
[5] Ist Italiano Tecnol, Via Morego 30, I-16163 Genoa, Italy
基金
欧盟地平线“2020”;
关键词
TWEEZERS;
D O I
10.1063/5.0046245
中图分类号
O59 [应用物理学];
学科分类号
摘要
Plasmonic nanopores are extensively investigated as single molecules detectors. The main limitations in plasmonic nanopore technology are the too fast translocation velocity of the molecule through the pore and the consequent very short analysis times, as well as the possible instabilities due to local heating. An interesting approach to enable longer acquisition times is represented by the ability to stably trap the nanoparticles used to tag molecules close to the nanopore. Here, we theoretically investigate the performance of a magneto-plasmonic nanopore prepared with a thin layer of cobalt sandwiched between two gold layers. A nanopore is then coupled with a bifunctional (magnetic and plasmonic) core-shell nanoparticle made of magnetite (core) covered with a thin layer of gold (shell). By setting the magnetic configuration of the cobalt layer around the pore by an external magnetic field, it is possible to generate a nanoscale magnetic tweezer to trap the nanoparticle at a specific point. Considering a similar to 10 nm diameter magnetite nanoparticle, we calculate a trapping force up to 28 pN, an order of magnitude above the force that can be obtained with standard optical or plasmonic trapping approaches. Moreover, the magnetic force pulls the nanoparticle in close contact with the plasmonic nanopore's wall, thus enabling the formation of a nanocavity enclosing a sub-10 nm(3) confined electromagnetic field with an average field intensity enhancement up to 230 at near-infrared wavelengths. The presented hybrid magneto-plasmonic system points toward a strategy to improve nanopore-based biosensors for single-molecule detection and potentially for the analysis of various biomolecules.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Entropic Trapping of DNA with a Nanofiltered Nanopore
    Lam, Michelle H.
    Briggs, Kyle
    Kastritis, Konstantinos
    Magill, Martin
    Madejski, Gregory R.
    McGrath, James L.
    de Haan, Hendrick W.
    Tabard-Cossa, Vincent
    ACS APPLIED NANO MATERIALS, 2019, 2 (08) : 4773 - 4781
  • [22] WAVE-PARTICLE TRAPPING EFFECTS ON LOWER HYBRID HEATING
    HARVEY, RW
    SPERLING, JL
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1977, 22 (09): : 1170 - 1170
  • [23] Particle trapping and beaming using a 3D nanotip excited with a plasmonic vortex
    Liu, Kai
    Maccaferri, Nicolo
    Shen, Yuefeng
    Li, Xueyun
    Zaccaria, Remo Proietti
    Zhang, Xuejin
    Gorodetski, Yuri
    Garoli, Denis
    OPTICS LETTERS, 2020, 45 (04) : 823 - 826
  • [24] Exciton trapping in a hybrid ferromagnetic/semiconductor magnetic antidot
    Freire, JAK
    Matulis, A
    Peeters, FM
    Freire, VN
    Farias, GA
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2001, 226 (PART II) : 2038 - 2039
  • [25] Magnetic Control of the Plasmonic Chirality in Gold Helicoids
    Kim, Jeong Won
    Cho, Nam Heon
    Kim, Ryeong Myeong
    Han, Jeong Hyun
    Choi, Seungwoo
    Namgung, Seok Daniel
    Kim, Hyeohn
    Nam, Ki Tae
    Nano Letters, 2022, 22 (20) : 8181 - 8188
  • [26] Magnetic Control of the Plasmonic Chirality in Gold Helicoids
    Kim, Jeong Won
    Cho, Nam Heon
    Kim, Ryeong Myeong
    Han, Jeong Hyun
    Choi, Seungwoo
    Namgung, Seok Daniel
    Kim, Hyeohn
    Nam, Ki Tae
    NANO LETTERS, 2022, : 8181 - 8188
  • [27] A magnetic particle micro-trap for large trapping surfaces
    Gooneratne, Chinthaka P.
    Liang, Cai
    Giouroudi, Ioanna
    Kosel, Juergen
    EUROSENSORS XXV, 2011, 25
  • [28] Plasmonic Trapping and Antitrapping of Nanoparticles
    Ivinskaya, A.
    Petrov, M. I.
    Bogdanov, A. A.
    Ginzburg, P.
    Shalin, A. S.
    2017 11TH INTERNATIONAL CONGRESS ON ENGINEERED MATERIALS PLATFORMS FOR NOVEL WAVE PHENOMENA (METAMATERIALS), 2017, : 310 - 311
  • [29] Simultaneous trapping of magnetic and diamagnetic particle plugs for separations and bioassays
    Tarn, Mark D.
    Peyman, Sally A.
    Pamme, Nicole
    RSC ADVANCES, 2013, 3 (20): : 7209 - 7214
  • [30] Light Trapping in Plasmonic Photovoltaics
    Ferry, Vivian E.
    2012 IEEE PHOTONICS CONFERENCE (IPC), 2012, : 52 - 53