A uniqueness result for a class of infinite semipositone problems with nonlinear boundary conditions

被引:3
作者
Hai, D. D. [1 ]
Muthunayake, A. [2 ]
Shivaji, R. [2 ]
机构
[1] Mississippi State Univ, Dept Math & Stat, Mississippi State, MS 39762 USA
[2] Univ North Carolina Greensboro, Dept Math & Stat, Greensboro, NC 27412 USA
关键词
Uniqueness; Infinite semipositone; Nonlinear boundary conditions; POSITIVE RADIAL SOLUTIONS; P-LAPLACIAN PROBLEMS; ELLIPTIC-EQUATIONS; EXTERIOR; EXISTENCE; MULTIPLICITY;
D O I
10.1007/s11117-021-00820-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study positive solutions to the two-point boundary value problem: -u '' = lambda h(t) f (u) : (0, 1) u(0) = 0 u' (1) + c(u1(1))u(1) = 0, where lambda > 0 is a parameter, h is an element of C-1 ((0, 1], (0, infinity)) is a decreasing function, f is an element of C-1 ((0, infinity), R) is an increasing concave function such that lims ->infinity % f (s) = infinity, lims ->infinity f(s)/s = 0, lims -> 0(+) f (s) = -infinity (infinite semipositone) and c is an element of C([0, infinity), (0, infinity)) is an increasing function. For classes of such h and f, we establish the uniqueness of positive solutions for lambda >> 1.
引用
收藏
页码:1357 / 1371
页数:15
相关论文
共 18 条
[1]   Inequalities for second-order elliptic equations with applications to unbounded domains .1. [J].
Berestycki, H ;
Caffarelli, LA ;
Nirenberg, L .
DUKE MATHEMATICAL JOURNAL, 1996, 81 (02) :467-494
[2]   UNIQUENESS OF NONNEGATIVE SOLUTIONS FOR A SEMIPOSITONE PROBLEM WITH CONCAVE NONLINEARITY [J].
CASTRO, A ;
HASSANPOUR, M ;
SHIVAJI, R .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1995, 20 (11-12) :1927-1936
[3]   Uniqueness of nonnegative solutions for semipositone problems on exterior domains [J].
Castro, Alfonso ;
Sankar, Lakshmi ;
Shivaji, R. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 394 (01) :432-437
[4]   UNIQUENESS OF POSITIVE RADIAL SOLUTIONS FOR A CLASS OF INFINITE SEMIPOSITONE p-LAPLACIAN PROBLEMS IN A BALL [J].
Chu, K. D. ;
Hai, D. D. ;
Shivaji, R. .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2020, 148 (05) :2059-2067
[5]   Uniqueness of positive radial solutions for infinite semipositone p-Laplacian problems in exterior domains [J].
Chu, K. D. ;
Hai, D. D. ;
Shivaji, R. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2019, 472 (01) :510-525
[6]   ON A SINGULAR NONLINEAR DIRICHLET PROBLEM [J].
COCLITE, MM ;
PALMIERI, G .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1989, 14 (10) :1315-1327
[7]   Uniqueness and nonexistence of positive solutions to semipositone problems [J].
Dancer, E. Norman ;
Shi, Junping .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2006, 38 :1033-1044
[8]  
DANCER EN, 1986, P LOND MATH SOC, V53, P429
[9]  
DIAZ JI, 1987, CR ACAD SCI I-MATH, V305, P521
[10]   Existence and multiplicity of positive radial solutions for singular superlinear elliptic systems in the exterior of a ball [J].
Hai, D. D. ;
Shivaji, R. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2019, 266 (04) :2232-2243