New upper bounds for the numerical radius of Hilbert space operators

被引:52
|
作者
Bhunia, Pintu [1 ]
Paul, Kallol [1 ]
机构
[1] Jadavpur Univ, Dept Math, Kolkata 700032, W Bengal, India
来源
BULLETIN DES SCIENCES MATHEMATIQUES | 2021年 / 167卷
关键词
Numerical radius; Hilbert space; Bounded linear operator; Inequality;
D O I
10.1016/j.bulsci.2021.102959
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we present new upper bounds for the numerical radius of bounded linear operators defined on a complex Hilbert space. Further we obtain estimations for upper bounds for the numerical radius of the sum of the product of bounded linear operators. We show that the bounds obtained here improve on the existing well-known upper bounds. (C) 2021 Elsevier Masson SAS. All rights reserved.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] UPPER AND LOWER BOUNDS FOR THE NUMERICAL RADIUS WITH AN APPLICATION TO INVOLUTION OPERATORS
    Abu-Omar, Amer
    Kittaneh, Fuad
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2015, 45 (04) : 1055 - 1065
  • [42] New Estimates on Numerical Radius and Operator Norm of Hilbert Space Operators
    Hassani, Mahmoud
    Omidvar, Mohsen Erfanian
    Moradi, Hamid Reza
    TOKYO JOURNAL OF MATHEMATICS, 2021, 44 (02) : 439 - 449
  • [43] New Inequalities for Davis-Wielandt Radius of Hilbert Space Operators
    Bhunia, Pintu
    Bhanja, Aniket
    Paul, Kallol
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2021, 44 (05) : 3523 - 3539
  • [44] New Inequalities for Numerical Radius of Hilbert Space Operator And New Bounds For The Zeros Of Polynomials
    Al-Hawari, Mohammad
    Aldahash, Abdullah Ahmed
    2013 INTERNATIONAL CONFERENCE ON SCIENCE & ENGINEERING IN MATHEMATICS, CHEMISTRY AND PHYSICS (SCIETECH 2013), 2013, 423
  • [45] Numerical Radius Inequalities for Commutators of Hilbert Space Operators
    Hirzallah, Omar
    Kittaneh, Fuad
    Shebrawi, Khalid
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2011, 32 (07) : 739 - 749
  • [46] FURTHER INEQUALITIES FOR THE NUMERICAL RADIUS OF HILBERT SPACE OPERATORS
    Tafazoli, Sara
    Moradi, Hamid Reza
    Furuichi, Shigeru
    Harikrishnan, Panackal
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2019, 13 (04): : 955 - 967
  • [47] ON SOME NUMERICAL RADIUS INEQUALITIES FOR HILBERT SPACE OPERATORS
    Ghasvareh, Mahdi
    Omidvar, Mohsen Erfanian
    METHODS OF FUNCTIONAL ANALYSIS AND TOPOLOGY, 2021, 27 (02): : 192 - 197
  • [48] Another generalization of the numerical radius for Hilbert space operators
    Zamani, Ali
    Wojcik, Pawel
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2021, 609 : 114 - 128
  • [49] Norm and numerical radius inequalities for Hilbert space operators
    Bani-Domi, Watheq
    Kittaneh, Fuad
    LINEAR & MULTILINEAR ALGEBRA, 2021, 69 (05) : 934 - 945
  • [50] SOME INEQUALITIES FOR THE NUMERICAL RADIUS FOR OPERATORS IN HILBERT C*-MODULES SPACE
    Moosavi, Baharak
    Hosseini, Mohsen Shah
    JOURNAL OF INEQUALITIES AND SPECIAL FUNCTIONS, 2019, 10 (01) : 77 - 84