New upper bounds for the numerical radius of Hilbert space operators

被引:57
作者
Bhunia, Pintu [1 ]
Paul, Kallol [1 ]
机构
[1] Jadavpur Univ, Dept Math, Kolkata 700032, W Bengal, India
来源
BULLETIN DES SCIENCES MATHEMATIQUES | 2021年 / 167卷
关键词
Numerical radius; Hilbert space; Bounded linear operator; Inequality;
D O I
10.1016/j.bulsci.2021.102959
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we present new upper bounds for the numerical radius of bounded linear operators defined on a complex Hilbert space. Further we obtain estimations for upper bounds for the numerical radius of the sum of the product of bounded linear operators. We show that the bounds obtained here improve on the existing well-known upper bounds. (C) 2021 Elsevier Masson SAS. All rights reserved.
引用
收藏
页数:11
相关论文
共 13 条
[1]   BOUNDS OF NUMERICAL RADIUS OF BOUNDED LINEAR OPERATORS USING t-ALUTHGE TRANSFORM [J].
Bag, Santanu ;
Bhunia, Pintu ;
Paul, Kallol .
MATHEMATICAL INEQUALITIES & APPLICATIONS, 2020, 23 (03) :991-1004
[2]   Some improvements of numerical radius inequalities of operators and operator matrices [J].
Bhunia, Pintu ;
Paul, Kallol .
LINEAR & MULTILINEAR ALGEBRA, 2022, 70 (10) :1995-2013
[3]   Numerical radius inequalities and its applications in estimation of zeros of polynomials [J].
Bhunia, Pintu ;
Bag, Santanu ;
Paul, Kallol .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2019, 573 :166-177
[4]  
BUZANO M. L, 1974, Rend. Sem. Mat. Univ. e Politech. Torino, V31, P405
[5]  
Dragomir SS, 2008, TAMKANG J MATH, V39, P1
[6]   Numerical radius inequalities for Hilbert space operators [J].
Kittaneh, F .
STUDIA MATHEMATICA, 2005, 168 (01) :73-80
[7]   NOTES ON SOME INEQUALITIES FOR HILBERT-SPACE OPERATORS [J].
KITTANEH, F .
PUBLICATIONS OF THE RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES, 1988, 24 (02) :283-293
[8]   A numerical radius inequality and an estimate for the numerical radius of the Frobenius companion matrix [J].
Kittaneh, F .
STUDIA MATHEMATICA, 2003, 158 (01) :11-17
[9]  
Nayak R.K., 2020, MATH INEQUAL APPL
[10]  
Paul K, 2020, ARXIV200903206MATHFA