On solitary wave solutions of the compound Burgers-Korteweg-de Vries equation

被引:10
作者
David, Claire
Fernando, Rasika
Feng, Zhaosheng
机构
[1] CNRS, UMR 7607, F-75252 Paris 05, France
[2] Univ Paris 06, Modelisat Mecan Lab, F-75252 Paris, France
[3] Univ Texas, Dept Math, Edinburg, TX 78541 USA
关键词
solitary wave; kink-profile wave; hyperbolic ansatz;
D O I
10.1016/j.physa.2006.09.008
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The goal of this note is to construct a class of traveling solitary wave solutions for the compound Burgers-Korteweg-de Vries equation by means of a hyperbolic ansatz. A computational error in a previous work has been clarified. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:44 / 50
页数:7
相关论文
共 18 条
[1]  
Ablowitz MJ., 1981, SOLITONS INVERSE SCA, V4
[2]  
Burgers J M., 1939, T ROY NETH ACAD SCI, V17, P1
[3]  
DODD R., 1983, Solitons and Nonlinear Wave Equations
[4]   Solitary wave solutions of the compound Burgers-Korteweg-de Vries equation [J].
Feng, ZS ;
Chen, G .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2005, 352 (2-4) :419-435
[5]   A note on "Explicit exact solutions to the compound Burgers-Korteweg-de Vries equation" [J].
Feng, ZS .
PHYSICS LETTERS A, 2003, 312 (1-2) :65-70
[6]   On explicit exact solutions to the compound Burgers-KdV equation [J].
Feng, ZS .
PHYSICS LETTERS A, 2002, 293 (1-2) :57-66
[7]  
Ince E., 1956, Ordinary Differential Equations
[8]  
Korteweg DJ., 1895, Lond Edinb Dub Philos Mag J Sci, V39, P422, DOI [10.1080/14786449508620739, DOI 10.1080/14786449508620739]
[9]   Explicit exact solutions for new general two-dimensional KdV-type and two-dimensional KdV-Burgers-type equations with nonlinear terms of any order [J].
Li, B ;
Chen, Y ;
Zhang, HQ .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2002, 35 (39) :8253-8265
[10]  
Paladin Vivian, 1997, A modern introduction to the mathematical theory of water waves, pix