Distributional chaos in constant-length substitution systems

被引:2
|
作者
Wang, Hui [1 ]
Fan, Qinjie [1 ]
Liao, Gongfu [1 ]
机构
[1] Jilin Normal Univ, Dept Math, Siping 136000, Peoples R China
关键词
Distributional chaos; Substitution system; SCRAMBLED SETS;
D O I
10.1016/j.na.2009.09.030
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we study distributional chaos in the primitive constant-length substitution system and give a sufficient and necessary condition for a primitive constant-length substitution system to have DC pairs. (C) 2009 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1902 / 1908
页数:7
相关论文
共 50 条
  • [31] Some weak versions of distributional chaos in non-autonomous discrete systems
    Shao, Hua
    Shi, Yuming
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2019, 70 : 318 - 325
  • [32] Invariant scrambled sets and distributional chaos
    Oprocha, Piotr
    DYNAMICAL SYSTEMS-AN INTERNATIONAL JOURNAL, 2009, 24 (01): : 31 - 43
  • [34] On a problem of iteration invariants for distributional chaos
    Dvorakova, J.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2012, 17 (02) : 785 - 787
  • [35] Distributional Chaos in Coupled Map Lattices
    Wang, Lidong
    Li, Bing
    Chu, Zhenyan
    CCDC 2009: 21ST CHINESE CONTROL AND DECISION CONFERENCE, VOLS 1-6, PROCEEDINGS, 2009, : 1067 - +
  • [36] Minimality and distributional chaos in triangular maps
    Balibrea, Francisco
    Rucka, Lenka
    JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2023, : 1662 - 1670
  • [38] Generalized specification property and distributional chaos
    Balibrea, F
    Schweizer, B
    Sklar, A
    Smítal, J
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2003, 13 (07): : 1683 - 1694
  • [39] On variants of distributional chaos in dimension one
    Malek, Michal
    Oprocha, Piotr
    DYNAMICAL SYSTEMS-AN INTERNATIONAL JOURNAL, 2011, 26 (03): : 273 - 285
  • [40] Strong distributional chaos and minimal sets
    Balibrea, F.
    Smital, J.
    TOPOLOGY AND ITS APPLICATIONS, 2009, 156 (09) : 1673 - 1678