Distributional chaos in constant-length substitution systems

被引:2
作者
Wang, Hui [1 ]
Fan, Qinjie [1 ]
Liao, Gongfu [1 ]
机构
[1] Jilin Normal Univ, Dept Math, Siping 136000, Peoples R China
关键词
Distributional chaos; Substitution system; SCRAMBLED SETS;
D O I
10.1016/j.na.2009.09.030
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we study distributional chaos in the primitive constant-length substitution system and give a sufficient and necessary condition for a primitive constant-length substitution system to have DC pairs. (C) 2009 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1902 / 1908
页数:7
相关论文
共 13 条
[1]  
[Anonymous], 1963, Trans. Amer. Math. Soc.
[2]   Asymptotic orbits of primitive substitutions [J].
Barge, M ;
Diamond, B ;
Holton, C .
THEORETICAL COMPUTER SCIENCE, 2003, 301 (1-3) :439-450
[3]   Constant-length substitutions and countable scrambled sets [J].
Blanchard, F ;
Durand, F ;
Maass, A .
NONLINEARITY, 2004, 17 (03) :817-833
[4]   Relations between distributional, Li-Yorke and ω chaos [J].
Guirao, JLG ;
Lampart, M .
CHAOS SOLITONS & FRACTALS, 2006, 28 (03) :788-792
[5]   PERIOD 3 IMPLIES CHAOS [J].
LI, TY ;
YORKE, JA .
AMERICAN MATHEMATICAL MONTHLY, 1975, 82 (10) :985-992
[6]   A chaotic function with a distributively scrambled set of full Lebesgue measure [J].
Liao, Gongfu ;
Wang, Lidong ;
Duan, Xiaodong .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2007, 66 (10) :2274-2280
[7]   Distributional chaos via semiconjugacy [J].
Oprocha, Piotr ;
Wilczynski, Pawel .
NONLINEARITY, 2007, 20 (11) :2661-2679
[8]   Shift spaces and distributional chaos [J].
Oprocha, Piotr ;
Wilczynski, Pawel .
CHAOS SOLITONS & FRACTALS, 2007, 31 (02) :347-355
[9]   Strange distributionally chaotic triangular maps II [J].
Paganoni, L ;
Smítal, J .
CHAOS SOLITONS & FRACTALS, 2006, 28 (05) :1356-1365
[10]   MEASURES OF CHAOS AND A SPECTRAL DECOMPOSITION OF DYNAMICAL-SYSTEMS ON THE INTERVAL [J].
SCHWEIZER, B ;
SMITAL, J .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1994, 344 (02) :737-754