Traveling Quasi-periodic Water Waves with Constant Vorticity

被引:36
作者
Berti, M. [1 ]
Franzoi, L. [1 ]
Maspero, A. [1 ]
机构
[1] Int Sch Adv Studies SISSA, Via Bonomea 265, I-34136 Trieste, Italy
关键词
SCHRODINGER-EQUATION; KAM THEOREM; EXISTENCE;
D O I
10.1007/s00205-021-01607-w
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove the first bifurcation result of time quasi-periodic traveling wave solutions for space periodic water waves with vorticity. In particular, we prove the existence of small amplitude time quasi-periodic solutions of the gravity-capillary water waves equations with constant vorticity, for a bidimensional fluid over a flat bottom delimited by a space-periodic free interface. These quasi-periodic solutions exist for all the values of depth, gravity and vorticity, and restrict the surface tension to a Borel set of asymptotically full Lebesgue measure.
引用
收藏
页码:99 / 202
页数:104
相关论文
共 47 条
[1]   Gravity Capillary Standing Water Waves [J].
Alazard, Thomas ;
Baldi, Pietro .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2015, 217 (03) :741-830
[2]  
[Anonymous], 2009, MEM AM MATH SOC, V200, P1
[3]  
[Anonymous], 1958, Ann. Sci. Univ. Toulouse
[4]   Time quasi-periodic gravity water waves in finite depth [J].
Baldi, Pietro ;
Berti, Massimiliano ;
Haus, Emanuele ;
Montalto, Riccardo .
INVENTIONES MATHEMATICAE, 2018, 214 (02) :739-911
[5]   Degenerate KAM theory for partial differential equations [J].
Bambusi, D. ;
Berti, M. ;
Magistrelli, E. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2011, 250 (08) :3379-3397
[6]   Large KAM Tori for Quasi-linear Perturbations of KdV [J].
Berti, Massimiliano ;
Kappeler, Thomas ;
Montalto, Riccardo .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2021, 239 (03) :1395-1500
[7]   A Nash-Moser Approach to KAM Theory [J].
Berti, Massimiliano ;
Bolle, Philippe .
HAMILTONIAN PARTIAL DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2015, :255-284
[8]  
Constantin A, 2011, CBMS-NSF MA, V81, P1, DOI 10.1137/1.9781611971873
[9]   Exact steady periodic water waves with vorticity [J].
Constantin, A ;
Strauss, W .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2004, 57 (04) :481-527
[10]   Particle trajectories in linear water waves [J].
Constantin, Adrian ;
Villari, Gabriele .
JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2008, 10 (01) :1-18